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8-Spinor Field Model and Quantum Mechanics 

Yu. P. Rybakov a  

a, Department of Theoretical Physics, Peoples' Friendship University of Russia,  
6, Mikluho-Maklay str., 117198 Moscow, Russia   

Abstract. In the paper the structure of the chiral 8-spinor field model based 
on the Brioschi identity and its connection with Quantum Mechanics are 
discussed.  The existence of soliton solutions in this model being supposed, 
we consider small excitations of the vacuum at large distances. Two 
nontrivial modes prove to be possible, massive and massless ones.  
Keywords: 8-spinor identity, Higgs-like potential, soliton solutions, vacuum 
excitations. 
PACS: 03.50.-z, 03.65.-w, 03.65.Pm. 

BRIOSCHI IDENTITY AND TOPOLOGICAL SOLITONS  

 The Skyrme's idea to describe baryons as topological solitons [1] proved to be 
fruitful in nuclear physics for modeling the internal structure of hadrons [2, 3] and 
light nuclei [4, 5]. In the Skyrme Model the topological charge Q = deg ( 33 SS → ) 
is interpreted as the baryon number B and serves as the generator of the homotopy 
group ZS =)( 3

3π . 
The similar idea to describe leptons as topological solitons was announced by  

L.D. Faddeev [6]. In the Faddeev Model the Hopf invariant HQ  is interpreted as 
the lepton number L and serves as the generator of the homotopy group ZS =)( 2

3π
.The unification of these two approaches was suggested in [7], hadrons and leptons 
being considered as two possible phases of the effective 8-spinor field model. 

The basic idea was to take into account the existence of the special 8-spinors 
identity discovered by the Italian geometer Brioschi [8]: 

                              2222
~~

avpsjjjj rr
+++=− μ

μ
μ

μ ,                              (1) 
where the following quadratic spinor quantities are introduced: 
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with 0γ+Ψ=Ψ and  λ
r

 standing for Pauli matrices in the flavor (isotopic) space. 
Here the diagonal (Weyl) representation for += 55 γγ  is used and μ  = 0, 1, 2, 3, 
designate the unitary Dirac matrices acting on Minkowski spinor indices.  

If one defines 8-spinors as columns: 
=Ψ  col ),( 21 ψψ , =iψ  col ),,( ii χϕ  ,2,1=i  
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with iϕ  and iχ  being 2-spinors, then one easily finds that the following identity 
holds: 

222222 Δ++++= avpsjj rrμ
μ ,    (2) 

showing the time-like character of the 4-vector μj  where the denotation is 
introduced: 

[ ] .0||))((||))((8 2
212211

2
212211

2 ≥−+−=Δ ++++++ χχχχχχϕϕϕϕϕϕ  
The structure of the identity Eq. 2  leads to the natural conclusion that the Higgs 

potential V  in the effective spinor field model can be represented as the function of 
μ

μ jj : 

                                          −= μ
μ

σ jjV (
8

2
ϰ 22

0 ) ,                                   (3) 

with σ  and ϰ 0  being some constant parameters.  
If one searchs for localized soliton-like configurations in the model, one finds 

the natural boundary condition at space infinity: 
=

∞→

μ
μ jj

x||
limr  ϰ 2

0 .                                              (4) 

As follows from the identity Eq. 2, the condition Eq. 4 determines the fixed 
(vacuum) point on the surface 8S . Using Eq. 4  and the well-known property of 
homotopic groups of spheres: 0)(3 =nSπ   for ,4≥n  one concludes that the two 
phases with nontrivial topological charges may exist in the model Eq.3. The first 
one corresponds to the choice ZS =)( 3

3π (Skyrme Model) and the second one 
coresponds to the choice ZS =)( 2

3π (Faddeev Model). 
For example, if the vacuum state 0Ψ  defines 0)( 0 ≠Ψs , then the configurations 

characterized by the chiral invariant 22 as r
+ determining sphere 3S  as the field 

manifold are possible, that corresponds to Skyrme Model phase. 
On the contrary, if only 0)( 03 ≠Ψv , then the SO(3) invariant 2vr determines the        

2S field manifold, that corresponds to Faddeev Model phase. 

EFFECTIVE NONLINEAR 8-SPINOR FIELD MODEL  

     In view of these topological arguments, using the analogy with Skyrme (or 
Faddeev) Model, we suggested in [7] the following Lagrangian density for the 
effective 8-spinor field model: 

                           ,
42

1 2

2 VffjL −+Ψ∂Ψ∂= μν
μν

μ
ν

ν
μ

εγ
λ

                       (5) 

where μνf  stands for the anti-symmetric tensor of Faddeev - Skyrme type:  
                                   ),)(( ][ ΨΨ∂Ψ∂Ψ= ανμ

α
μν γγf  

with λ  and ε  being constant parameters of the model. It should be stressed that the 
first term in Eq. 5 generalizes the sigma-model term in Skyrme Model and includes 
the projector  ν

νγγ jP 0=  on the positive energy states. The second term in Eq. 5 
gives the generalization of  Skyrme (or Faddeev) term. 



6 
 

     We intend now to study the behavior of possible topological soliton solutions in 
the model Eq. 5 at large distances that corresponds to small excitations of the 
vacuum: 

                                0,0 →+Ψ=Ψ ξξ  at ∞→|| xr .                                  (6) 
     Inserting Eq. 6 into Eq. 5, one gets the second variation of the Lagrangian 
density: 

                               ,)(
4

1 22
2

02
2 jPL δσξξ

λ
δ μ

μ −∂∂= +                                 (7) 

where the following denotations were used: 
                            ,,)(2 )0(0

000
)0(2

ν
νμμ

μ γγηξγγξδ jPjj =≡Ψ+Ψ=               (8) 
with   )0(

νj  standing for the vacuum value of the current  νj .  
     From Eq. 7 and Eq. 8 one easily derives the equations of motion for the 
perturbation ξ : 

                               .01
0

2
02 =+∂∂ ξησξ

λ
μ

μ PP                                              (9) 

If one inserts into Eq. 9 ,*,0 kkk =Ψ=ξ   and takes into account Eq. 8 and the 
boundary value Eq. 4, one finds that the scalar function  k4=η ϰ 2

0  satisfies the 
well-known Klein – Gordon equation 

0)( 2
0 =+∂∂ kMμ

μ                                                   (10) 
with the mass term given by 222

0 4 σλ=M ϰ 2
0 . 

On the contrary, if one considers imaginary ,,* 0Ψ=−= kkk ξ then from Eq. 8 one 
derives  0=η  and the wave equation  

                                         0=∂∂ kμ
μ ,                                                   (11) 

that corresponds to the massless excitations in our model.   
    Thus, we conclude that our model admits two types of vacuum excitations, 
massive and massless ones.  The evident interpretation of this result can be 
obtained if one considers the soliton-like excitation ξ  as the wave function in the 
special stochastic representation of Quantum Mechanics [8]. 
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0905.0099v2 [nucl-th]. 
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Scales and Explanation of Physical Effects  

V.V. Aristov 

Dorodnicyn Computing Centre of Russian Academy of Sciences 
 

Abstract. The approach of the relational statistical modeling the properties of the 
physical space and time is applied to consider some complicated phenomena of the 
modern cosmology. The main attention is paid to consideration of the Dark Matter 
(DM) problem. In contrast to the traditional view the explanation of the effects 
associated with DM can be made by changing the basic apparatus of the theory of 
gravitation in the framework of the relational statistical space-time concept. This is 
possible due to the main relationships of the concept in which the known physical 
equations are not postulated but are deduced from the basic relationships for 
determination of the space and time. Thus DM is treated as a fictitious mass which 
must be prescribed to the equations for the cosmological scales.  
     Keywords: relational statistical model of space-time, dark matter  
     PACS: 04.20CV, 04.25.Nx, 04.50.Kd.  

INTRODUCTION 

      Challenges in the modern physics related to unexplained phenomena of Dark 
Matter (DM) and Dark Energy (DE) require experimental and theoretical 
investigations.  The traditional view on the DM proposed the numerous attempts to 
explain this phenomenon in the framework of the classical gravitation theory that 
leads to search for the hidden matter. The unsuccessful attempts to find “particles 
of DM” (WIMP etc) is a one of the reasons to change the theory.  
     There are some approaches, for example semi-empirical theories, in particular,  
Modified Newtonian Dynamics (MOND) [1], in which corrections in the classical 
formulae are inserted. MOND introduces a constant value with the dimensions of 
an acceleration, and asserts that standard Newtonian dynamics is a good 
approximation only for accelerations that are much larger than this value. There are 
also contemporary attempts to change the physical and mathematical apparatus of 
General Relativity (GR). For instance in [2-3] isotropic cosmology built in the 
Riemann-Cartan space-time leads to solution of problems of DM and DE. 
     In contrast our approach tries to deduce the mentioned physical consequences 
from the basic equations for space and time. The relational statistical space-time 
concept allows us to describe some physical effects, in particular, gravitation 
without introduction of the notion of field, see [4, 5]. In the present paper the 
important conclusions of this approach are discussed. The Mach principal underlies 
the theory because space and time are treated, in fact, as statistical cosmological 
values. So the known relationships between microscopic and macroscopic level of 
description are deduced from the relations of the probability theory. Connection of 
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the gravitation and the electromagnetism are also discussed. This link is derived 
not in terms of the field theory but on the basis of the relational concept.  
    In the present paper the problem of DM is only considered and DM is treated as 
a fictitious value. It is due to the connection between mass (matter) and distance 
which is one of the main postulates of our concept. Namely, in this concept the 
distance can be measured in units of the mass with introducing the statistical model 
of the rods. The structure of the space is related to the configuration of particles in 
the Universe, so different distributions determine on the gravitation relationships.  
 

STATISTICAL RELATIONAL APPROACH 
 

 The statistical relational space-time concept implies constructing the physical 
theory based on the generalized models of fundamental instruments for measuring 
space and time. In so doing one can introduce the models of physical space and 
time and deduce the appropriate equations. We present general formulae from [6-
8].   
      We postulate an equation for a time increment dτ  in which the set of all 
particles of the system under consideration simulates these properties. An 
increment of time is obtained by infinitesimal increments of the coordinates of the 
particles (determined by the idealized photo-camera in the given point):  
 

                                     
2

2 2

1 1

1( ) .
N N

i j
i j

ad dr dr
N N

τ
= =

= −∑ ∑                                 (1) 

Here a=1/c, where c is the speed of light (it is proved in [6]).  
    «Discrete scale ruler» and main equations of the relational space can be deduced 
in the following  way. A model of the fundamental device is founded by means of 
the uniform distributed discrete medium of particles. A process of measurement 
consists in the correspondence between the body and a system of particles of the 
discrete medium. Formalization of the measurement process introduces a model of 
the relational statistical discrete space. We cannot measure a distance less than 
“one particle”. Here is a minimum length  
 

        ,e er bm=                                                                (2) 
where me is the mass of the particle (atom)  and b the factor determined from 
applying the concept to quantum effects. One can obtain with the use Eq. 2, see [9]   
 

 2/ ( ),eb h m c=                                                (3) 
where h is the Planck constant. The distance can be expressed through the 
distribution (configuration) of masses of the system under consideration which can 
be represented by the following average: 
 

                                     
1

.
N

i
i

bdr dm
N =

= ∑                                               (4) 
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     One of the essential properties of this approach implies that space and time and 
consequently the dynamics of the system (in particular the Universe) are 
determined and expressed directly through the distribution of the moving set of the 
particles (atoms) of the all system. The time value is expressed from Eq. 1 through 
the spatial units with the appropriate recalculation using the factor a. The space 
unit in turn can be expressed from Eq. 4 through the mass units with the 
appropriate recalculation using the factor b. The last fact plays the crucial role in 
the explanation of DM effects, because the distances and masses can in fact be 
compared. We emphasize that Eqs.1-4 allow to deduce physical equations from 
mathematical relations.  
  

THE  PROBLEM   OF DM  IN  THE  FRAMEWORK OF THE 
RELATIONAL  STATISTICAL CONCEPT  

  
    The concept of the relational statistical space-time in the cosmological scales 
allows us to understand gravitational effects. Time and space according to the 
model formulae (1) and (4) correspond to the measurements of the physical clocks 
and rules respectively. But this is true with the limiting accuracy for the uniform 
distributions of masses in the system under consideration and for the uniform 
motion of all particles. For the situation of “the mass clots”, i.e. of the body with 
the nonunity mass (if the local distribution of masses differs from the average) 
there are distinction from the readings of the appropriate fundamental devices and 
this can be treated as the manifestation of the gravitation. Such an approach can 
reproduce some known consequences of General Relativity, e.g. the effect of the 
curve of the light ray and the gravitation lensing. Moreover the concept is in fact a 
realization of the Mach principal.  
     The notion of DM can be reduced to the manifestation of the statistical 
properties with essential nonuniformity of the matter at the cosmological scales. 
The formula for the ordinary Newtonian gravitational potential is derived from the 
statistical relations when particles in the Universe is uniformly distributed. Then 
the most part of particles is in the distance of R from the particle under 
consideration, where R is the radius of the Universe. The important assumption is 
that all physical relationships are based and derived from the mathematical 
relations for the space-time, so the proposed relational statistical space-time 
concept provides all equations including relationships for DM.  
     With the nonuniformity, e.g. the existence of the big galaxy, the uniformity is 
disturbed. In this case the effective distance to the numerous particles of the galaxy 
can be significantly smaller than R. Thus the gravitational potential would be 
increased. But as the expression for the potential is derived from the relation of two 
dimensionless sum (and this value is approximately constant), for “compensation” 
one can increase the mass with the same distance of the order of R. In this case one 
cannot suppose that DM exists, but the effects of DM can be explained by the 
generalization of the relational statistical concept.  
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 The ordinary gravitational potential is obtained (see [8]) by comparing two 
dimensionless (taking into account the mentioned fact about measuring time in 
units of space and respectively space in mass units) sum by means of the 
probability theory  

∑∑
i

i

i i

e

c
u

r
m

2

2

~ ,  

where ~ir R . The last equation is valid because for the uniform distribution of the 
matter in the world one can suppose that the most part of the effective matter is 
concentrated in the layer of the sphere at the scale of the order of R, thus one can 
use the sum of the stochastic values of the same order.  
 More correctly this equality can be rewritten as follows  
 

    
2

1
2

2 2 1

1( )
1 1 1( )

N

jN N
j e

i i i

u u
N m O

N c N m N
=

= =

−
= +

∑
∑ ∑      (5) 

 
where N is the so-called Eddington number (the number of nucleons in the 
Universe). Here the 1-st particle is considered and the distance from this particle to 
the other particles measured in terms of the appropriate masses are written.  
 From Eq. 5 using the appropriate dimension values one can derive the 
ordinary expression for Newton’s gravitation potential  
 

.
2 1

N
e

гр N
i i

m
G

r
φ

=

= − ∑ ,  

 
where G is the gravitation constant.  
      Eq. 5 is a realization in the concept of the Mach principle and the statistical 
relationships applied for the global scales leads to reproducing some relationships 
between fundamental constants. In particular one can derive for constant b from 
Eq. 3  
 

2( ) / ,b NG c=   
 
     For the large masses of the astrophysical objects the linear relation between 
distance and mass (“connection” of distance and mass) results in changing the 
dynamical equations. For compensation of a large number of particles at the 
distance smaller than the radius of the Universe (a galaxy etc) ir R<  it needs to 
prescribe the additional mass 'im  in such a manner that  

2

2

' ~
'

i i i

i ii

m m ub
r c
+∑ ∑ ,  

where ' ~ir R . In this expression the mentioned idea of the relational statistical 
model of the space is realized, that the distance can be measured in fact in the mass 
units. This can be associated with the suggestion of DM theory in which each 
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galaxy contains a halo of an as yet unidentified type of matter that provides an 
overall mass distribution different from the observed distribution of normal matter.  
 In more detail in a case of the large concentration of particles at distances 
smaller than the radius the sum in the right size will be greater. With the aim to 
conserve the previous form in the right hand side one can introduce the fictitious 
mass and the previous value of the distance:  

'

.
2 21 1

N N
e e e

гр N
i ii i

m m mGG
Ar A r

φ
= =

+
= − = −∑ ∑  

 Here A N= . This can be made due to the mentioned “connection” of 
distance and mass. The constant A is as follows  

eR Ar=  and this magnitude of this 
constant is estimated in [8].  
 In the case of large masses (for example the concentration of particles such as 
the galaxy) the uniformity of the distribution of distances is also destroyed. In 
other words, one can compensate changing r1i  to R  by the appropriate increase of 
the mass Mme to Mme +M’me, where M is the number of particles in the galaxy 
under consideration and M’  is the fictitious mass of DM. Let us consider this 
derivation.  
 

2 2 2 2 21 1 1 1 1 1 1 1 1

'1 1 1 1 1N N N N N
e e e e e

i i i i ii i i i i

m m Am Am m m
Ab m A r Ab A m A A r A r= = = = =

+
= = = =∑ ∑ ∑ ∑ ∑  

 
      Here A1<A, the part of the particles for which the radius is smaller than R can 
be considered in the real situation. Thus the generalization of theory of gravitation 
on the basis of the relational statistical space-time excludes the existence of DM.  
      In this short paper we try to show how the theory of space-time introduces the 
effective mass which can be treated as DM, the next possible step would be an 
analysis of the real distributions stellar and galaxy systems to consider the 
correspondence of the theoretical predictions with the experimental data.  
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Stationary states of non-relativistic electron in 
magnetic-solenoid field:  

Classical orbits approach 

Damiao P. Meira Filho a, V.G. Bagrov b, S.P. Gavrilov c;d and D.M. Gitmand   

aFederal Institute of Pará Campus Santarém (Santarém-Pará-Brazil)  
bTomsk state university (Tomsk-Russia) 

cHerzen State Pedagogical University of Russia (St. Petersburg-Russia) 
dUniversity of São Paulo (São Paulo-São Paulo-Brazil) 

 
 

Abstract. The main task of this work is to evaluate the influence of a 
magnetic-solenoid field on stationary quantum states of a non-relativistic 
charged particle (electron).   In the problem under consideration  the classical 
orbits approach is associated to the two kinds of stationary quantum states: 
those which correspond to the classical trajectories which embrace the 
solenoid and those which do not. 
Keywords: Aharonov-Bohm effect,  Magnetic-solenoid field, Stationary 
States. 
PACS: 03.65Ta 

INTRODUCTION  

It  is  known  that  the  study  of  the  Aharonov-Bohm effect  was based  on  a 
mathematical treatment which consider the exact wave functions of an electron in 
the field of an infinitely long and infinitesimally thin solenoid [1].   Such functions 
allow one to analyze a nontrivial influence of the Aharonov-Bohm solenoid on 
scattering of free electron, which may give a new interpretation of eletromagnetic 
potentials in quantum theory.  Physically it is clear, that in such a scattering, the 
electron is subjected to  the  action  of  the  Aharonov-Bohm  field  for  a  short  
finite  time.     However,    there  exist  a  possibility to  consider  bound  states  of  
the  electron  on  which  it  is  affected  by  the  Aharonov-Bohm  field  for  the 
infinite  time.   Such  bound  states  exist  in  the  so-called  magnetic-solenoid  
field,  which  is  a superposition  of  the field of  Aharonov-Bohm solenoid  and  a  
collinear  constant and uniform  magnetic  field [2].    We  believe  that  such  
bound  states  of  an  electron  in  the  magnetic-solenoid field open new 
possibilities to the study of the Aharonov-Bohm effect.  The functions which are 
solutions of the schrodinger equations, or in other words the stationary quantum 
states are constructed [3,6,8].   Moreover,    the  two  kinds  of  stationary  quantum  
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states,       those  which  correspond to the  classical trajectories which embrace the 
solenoid and those which do not are pointed out.  We consider the  non-relativistic  
motion  of  an electron  with  charge  q = −e, e > 0,  and  mass  M  in  the 
magnetic-solenoid field  
 
 

 
 
 
which is a collinear superposition of a constant uniform magnetic field B directed 
along the  axis  z (B  >  0)  and  the  Aharonov-Bohm  field  (field  of  an  infinitely  
long  and  infinitesimally  thin solenoid)  with  a  finite  constant  internal  magnetic  
flux  Φ.     We use Cartesian coordinates x, y, z, as well as cylindrical coordinates 
r, Ԅ, such that 
 

 
 
and    The field (1, 2) can describe by the vector potential 

 

 
Classical motion of the electron in the magnetic-solenoid field is governed by the 
Hamiltonian 

            
where  p and  P are  the  generalized  and  kinetic  momentum,  respectively.         
Trajectories that do not intersect the solenoid have the form: 
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where  and are integration constants.  The expressions (8, 9, 10, 11) 
imply 

 
The  projection  of  particle  trajectories  on  the  xy-plane  are  circles. Particle 
images on the xy-plane are rotating with the cyclotron frequency ω.  For an 
observer which is placed near the solenoid with z > 0, the rotation is anticlockwise. 
The particle has a constant velocity ௣೥

ெ
  along the axis z. Since  the  electron  freely 

propagates  on  the z  axis,  only  motion  in the perpendicular plane z = 0 is 
nontrivial; this will be examined below.  denoting by ݎ௠௔௫ the maximal possible 
moving off and by  ݎ௠௜௡  the minimal possible moving off of the particle from  the  
z-axis,  we  obtain  from  (12,13,14,15)  .It follows 
from (8,9,10,11) that 

         
 

 
The energy E  of the particle rotation reads .   
By the help of  (16,17,18), it is also convenient to introduce the conserved quantity 
in terms of ܮ௭ as  

 
Already in classical theory, it is convenient, to introduce dimensionless complex 
quantities as follows: 
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One can see that  are complex integrals of motion.  One can write 
some physical quantities in terms of ܽଵ  and  ܽଶ  

                 

STATIONARY QUANTUM STATES 

The  quantum  behavior  of  the  electron  in  the  field  (1, 2)  is  determined  by  
the Schrodinger equation with the Hamiltonian 

       
 where determines the nontrivial behavior on the xy-plane.  It is convenient to 
presente magnetic  flux  Φ  in  equation  (2)  as   is  integer,  
and  0  ≤ µ  <  1 and    is  Dirac’s  fundamental  unit  of  magnetic  flux. 
Mantissa  of  the  magnetic flux  µ  determines,  in  fact,  all  the  quantum  effects 
due  to  the  presence  of  the  Aharonov-Bohm field.  The  corresponding  radial  
functions  were  taken  regular  at  r = 0,  they  correspond  to  a  most  natural  
self-adjoint  extension  (with  a  domain  )  of  the  
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FIGURE 1. Two types of trajectories 

 

differential symmetric operator .  Operator  is self-adjoint on
 and commutes with the self-adjoint Hamiltonian .  It is convenient to 

evaluate two types (j = 0 and j = 1, which are associated to ν > 0 and ν < 0, 
respectively) of common eigenfunctions of both operators [4,5] 

 
being 

 
where 

                              
The eigenfunctions have the form 

     
where 

                        
Still, it is convenient to present the two functions 
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where  

             
where  Here l, m (m ≥ 0) are two integers, 

  are Laguerre functions that are related to the Laguerre polynomials 
[7] as follows 

 
being 

                      
and Յ is normalization constant.  These functions form a complete orthogonalized 
set on  .  It is useful to define self-adjoint operators  by analogy with 
the corresponding classical relations: 

 
In the semiclassical limit the sign of the mean value of the operator  allows 
one to interpret the corresponding states as particle trajectories that embrace and do 
not embrace the solenoid “Figure 1”.  Namely, as follows from (32) and (41) an 
orbit embraces the solenoid for l ≥ 0 (j = 1), and do not for l ≤ −1 (j = 0). If µ ≠ 0, 
energy levels states (34) with l ≥ 0 are shifted with respect to the Landau levels by 
µω, while energy levels of states (34) l ≤ −1 remain coincide with the Landau 
levels. 
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Abstract. Let us start from two preliminary assumptions (Darvas, 2011): 
Although mass of gravity and mass of inertia are equivalent quantities in their 
measured values, they are qualitatively not identical physical entities. We 
take into consideration the difference between mass of gravity and mass of 
inertia in our equations. Although they are equivalent quantities in their 
measured values, they are qualitatively not identical physical entities. Then 
we extend this ‘equivalence is not identity’ principle to sources of further 
fundamental interaction fields, other than gravity (like electric charge, weak 
charges, colours). We call the two qualitatively different physical quantities 
“isotopic field-charges”. Provided that isotopic field charges can be 
distinguished in their physical behaviour, these  qualitatively different entities 
interact with each other.  These two assumptions allow an alternative 
interpretation of our physical experience. Based on them we demonstrated the 
existence of an invariance between the two isotopic forms of the field-
charges, first in mathematical terms (Darvas 2009) then the corresponding 
physical conservation law (Darvas. 2011). Based on these results, we 
formulate certain consequences, in our view, on the physical structure of 
matter. In this course, the emphasis will be placed on the prediction of a 
family of intermediate bosons. The proposed model clusters observations in 
another way than usual, it extends the Standard Model. Unlike existing 
alternative theories, e.g., the SUSY, which renders a new (“supersymmetric”) 
brother to each particle, this model clusters the observed sources of fields in 
two-eggs twin pairs, regarding them as isotopic states of each other, and there 
is left “only” the twin brothers of the bosons mediating their interactions to be 
observed. The extended model covers gravitational, electroweak and strong 
interactions. In contrast to the SUSY, which renders fermion-boson pairs as 
new-born brothers to each other, the Isotopic Field-Charge Spin (IFCS) 
theory, expanded in (Darvas, 2011), renders fermion-fermion and boson-
boson twins to each other. This model does not assume new fermions; the 
twin brothers of fermions originate in splitting the existing ones. Fermions 
split as a result of a newly interpreted property. The assumption is 
mathematically based (Darvas, 2009) on an invariance of interactions under 
rotation of the isotopic field charges’ spin (a property that distinguishes the 
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field charge twins from each other) in a still hypothetical, kinetic gauge field, 
that means, on the conservation of the isotopic field charge spin.  
Keywords: Kinetic field, Equivalence principle, General Theory of 
Relativity, High energy physics, Symmetry, Invariance, Isotopic field-charges 
for the Gravitational interaction. Conservation, Isotopic field-charge spin, 
Symmetry breaking. 
PACS: 04.50.Kd, 04.90.+e, 11.30.Ly, 11.15.-q, 11.40.Dw, 03.65.Fd, 
12.60.Rc, 14.70.Pw, 14.80.-j 

  

INTERACTION BETWEEN THE ISOTOPIC FIELD CHARGES 
 
Take a measure on an object! You will have no experience that you found it in 

one or the opposite isotopic state. Would you observe a single particle, it were 
either in one or in the other IFCS state. We can call the two states as potential and 
kinetic, scalar and vector, or bound and free states. However, your measurement 
records a mixture of the two states. Nevertheless, you do not observe the individual 
IFCS states. Your observation suggests that they behave as being in both states, 
each measured object can occupy both a potential (bound) and a kinetic (free) 
IFCS state. In the lack of experience to catch a particle in one or the other stable 
state, we have good reason to assume that they permanently change their states. 
(Randomly or with a stable frequency, they may probably follow a similar 
mechanism like quarks do during their colour change via gluon exchange in the 
Standard Model).  

Let us consider a model of a doublet, when a particle can be in a potential state 
(V) and in a kinetic state (T).  According to its actual state it has potential or kinetic 
energy respectively. According to our observation all particles possess both. We 
can interpret the phenomenon in the following way: In a probabilistic model we 
can consider that the wave function of the given particle may be in a potential state 
with amplitude ψV, or in a kinetic state with amplitude ψT. We detect a probabilistic 
mixture in a measurement. In a large set of particles (e.g., in the case of a massive 
body consisting of many particles) the probabilities reach a stable proportion and 
we observe stabilised measurable potential and kinetic energies in a given 
reference frame. A harmonic oscillator model presumes the permanent change of a 
single particle between its two isotopic field charge states. A particle in a potential 
state plays the role of the source of a scalar field. Therefore a potential isotopic 
field charge (we denote by ךV) is a scalar quantity. A particle in a kinetic state 
serves as a current source of a vector field. So a kinetic isotopic field charge (we 
denote by ךT) plays roles in three vector components according to three, directed, 
independent components of a field charge current. An important consequence of 
the switch between the two IFC states is that the isotopic field charges must 
commute between a scalar and three components of a vector quantity, according to 
the velocity components of the kinetic state in the given reference frame. 
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Equivalence does not mean identity 
 
The equivalence principle is one of the main pillars of the general theory of 

relativity (GTR) [2]-[11]. It states the equivalence of the gravitational and inertial 
masses. Let’s consider the mass of gravity and the mass of inertia as two different 
properties of matter. For the same massive object can behave once as a source of 
gravity, then as a measure of inertia, we iinterpret them as two isotopic states of the 
same property, called mass of the object.  

Identical objects cannot be equivalent. Only qualitatively different objects can 
be compared to conclude a quantitative equivalence between them. Equivalence 
always presumes the existence of at least one property, in which the compared 
objects differ. (Isotopic spin is a good example how to avoid ambivalence.) 

As much as the mass is the field charge of the gravitational field, we call its two 
isotopic states as isotopic field charges for the gravitational interaction. The 
gravitational mass is associated with the (scalar) potential part of that interaction, 
while the inertial mass with the kinetic part. In GTR the latter is attributed to the 
momentum densities, while the former is associated with the gravitational field 
energy. They are separated within the stress-energy tensor (Tµν), but according to 
the general relativity principle they can be transformed into each other; – we 
should add, at least in their quantitatively equivalent values. GTR does not make 
any statement about the qualitative transformation of the two kinds of masses into 
each other. This was a reason to identify them. The need for a qualitative 
transformation simply has not emerged. Nevertheless, we show that it cannot be 
avoided. So, we introduce distinction between masses of gravity and inertia in our 
equations. (In a similar way, the electric charge – i.e., the source of the 
electromagnetic field – is the field charge of the electromagnetic interaction; 
flavour and lepton charge  – are the sources of the weak field; the colour charge – 
i.e., the source of the strong field – is the field charge of the strong interaction.) 
The sources – field charges – are assumed to be realised in the matter field, while 
they serve as sources for gauge fields. Are they really the same, or can one 
distinguish the two agents? The mass of gravity and the mass of inertia are 
considered as two equivalent quantity isotopic states of the field charge of the 
gravitational field. They represent two different qualities. Their concepts express 
two properties of matter, whose existence originates in different experiences. 
Physics established quantitative relations between them (i.e., equal values), 
however this fact does not vanish their qualitative difference. We argue that we 
have all reason to make distinction between them in our theories.  

When we introduce the two isotopic filed charges in our equations, they destroy 
certain symmetries of those equations. This contradicts to our experience. 
Therefore, there must be an invariance that compensates and restores the spoiled 
symmetry. To avoid the contradiction between experience and theory, we assume 
that the two kinds of charges of the gravitational field should be transformed into 
each other by a gauge transformation. Such a gauge transformation should involve 
the existence of a conserved property that we define in the following way. 
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- Since the required transformation affects the isotopic states of the individual 
field-charges (we mark it with  ך [’dalet’ the fourth letter of the Hebrew 
alphabet]), this transformation must be performed in a special gauge field; 
and since these states can occupy two positions in that gauge field, it must be 
a spin-like property, therefore, we call this property as Isotopic Field-Charge 
Spin (IFCS) and denote it by Δ, and we refer to the invariance transformation 
what we are seeking for as isotopic field-charge gauge transformation. This 
assumption assumes the existence of a local gauge field, in which the isotopic 
field-charge spin can rotate and occupy two states and concludes a conserved 
(non-Abelian) current and a corresponding class of SU(2) type invariances.  

- For the same object can behave, e.g., in the gravitational field, once as the 
source of a gravitational force, and in another frame of reference as a source 
of a (kinetic) inertial force (cf., covariance principle), they must be able to 
get transformed into each other. Non-Abelian character and arbitrariness 
involve that the orientation of the isotopic field-charge spin is of no physical 
significance. If we determine the proper form of this invariance 
transformation, it will counteract the loss of symmetry between the two kinds 
of field-charges, and bring our equations in compliance with the experimental 
observations.  

- The required invariance shows certain formal similarities to YM-type 
invariances [24]-[25]. However, it must differ from them in at least two 
features. Once, the concerned physical property, namely the isotopic field 
charge (IFC, ך), is a quite different physical property than the isotopic states 
of nucleons. Secondly, the gauge field – and consequently the gauge 
transformation that rotates the isotopic field charge spin (IFCS, Δ) in this 
gauge field – are quite different from the isotopic gauge field derived for the 
isotopic spin transformation. (For specification, see later sections.) 

The existence of such an invariance transformation provided a symmetry, and 
consequently a conservation law, with the conservation of the introduced new 
property (Δ) of the field-charges. The conservation of isotopic field-charge spin is 
identical with the requirement of invariance of all interactions under isotopic field-
charge spin rotation (in the gauge field where it is interpreted). Accordingly, all 
physical interactions should be invariant under a transformation in a specific gauge 
field, more precisely, under a rotation of the property, called isotopic field-charge 
spin (Δ). [16]-[18] proved that invariance transformation. 

ISOTOPIC FIELD CHARGES IN THE GRAVITATIONAL FIELD 

As a consequence of the distinction between mV and mT, as well as the 
association of the energy content with the mass mV and the components of the 
momentum with mT, we lose also the symmetry of the Tµν energy-momentum 
tensor. To retain symmetry in Einstein’s field equations we must require again the 
invariant transformation of mV and mT into each other in an appropriate gauge field. 
We refer to Mills [25] who foresaw the possible generalisation of YM type gauge 
invariance in general relativity “in close analogy with the curvature tensor”.  If we 
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consider the energy-momentum tensor (in which both isotopic states of mass 
appear) as the source of the gravitational field, then – in the usual way – a scalar 
and a vector potential can be separated. (A hypothetic vector potential is justified 
by a non-static effect, e.g., acceleration, in the field.) Although, unlike QED, there 
is no analogy with the meaning of a vector potential of the electromagnetic field, 
the consideration of the kinetic (inertial) mass as an individual physical property 
against the gravitational mass may lend certain meaning to a gravitational vector 
potential. We can explain this so, that m4 in T44 does not compose a fourth 
component of a four-vector in the classical theory of gravitation where there is a 
single scalar mass, while if we consider now m4 = mV, the three components of the 
kinetic mass mT can compose a three-vector, however Ti4 will not form a four 
vector either.  

To maintain the Lorentz invariance of our physical equations in the gravitational 
field, we must demand to restore the invariance of   T

V

m
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

r

 under an additional 

transformation that should counteract the loss of symmetry caused by the 
introduction of two isotopic states of mass. We discuss that transformation in 
section 2. Further, in the case of gravitation the relation of the scalar and the vector 
fields are not linear even if we have not made distinction between the potential and 
kinetic masses. The non-linearity is coded in the relation of the tensors [26]  at the 
left side of the Einstein equation (in units c = 1),  

1 8
2

R Rg g GTμν μν μν μνπ− + Λ =  

or 8G g GTμν μν μνπ+ Λ = where the Einstein tensor is defined as 1
2

G R Rgμν μν μν= −  

whose covariant derivative must vanish. 
Since our Tµν tensor on the right side has already lost its symmetry, we can take 

Λgμν  into account within a modified T’µν – handling the gravitational and kinetic 
masses in it together with the dark energy – and we get the following formally 
symmetric equation: 

 
'8G GTμν μνπ= . 

 
(The disadvantage of this apparently quasi-symmetric form is that the metric 

tensor gμν appears in the expressions at both sides of the equation.) It is only our 
enigmatic hope that the asymmetry hidden inside T’µν will be restored with the 
conservation of the IFCS for the isotopic gravitational field charges together with 
the dark energy. Nevertheless, even if the latter fails, the symmetry of the energy-
momentum tensor can be saved by the invariant gauge transformation of the IFCS. 
The most important analogy is between the behaviour of the potential and the 
kinetic field charges of the individual fields that makes probable to conjecture that 
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a unique transformation will assure their invariance.1 (See in details in the next 
sections.) 

THE ISOTOPIC FIELD-CHARGE SPIN (Δ) CONSERVATION 

Distortion of symmetry of our equations2 is not in accordance with experience. It 
can be restored by proving that there exists an invariance between the twin brothers 
of the field charges (sources of the fields) split according to the introduced new 
property (Δ). Invariance means that particles, disposed with these properties, can 
be exchanged. The “exchange rate” (gauge) depends on the velocity of the kinetic 
field charge compared to the respective matter field (i.e., to the scalar potential 
field charge in rest in that field). The validity of the assumption can be verified by 
demonstrating the existence of the gauge bosons that mediate the exchange. This 
invariance – as soon as proven – means a new symmetry principle of nature. This 
perspective is challenging! 

We present below the main lines of the mathematical proof [18] of such 
invariance. The demonstration of the predicted gauge bosons is left to the 
experimental physicists working on the observation of decay products at high 
energy collisions. 

Velocity dependent phenomena  
 

We know certain phenomena in classical physics that depend on velocity in a 
given reference frame. As examples, there can be mentioned first the kinetic 
energy, then the Lorentz force, and the covariant effect of the Lorentz 
transformation. Descriptions of the mentioned phenomena handle the space-time 
co-ordinates as indirect variables. The Lorentz invariance depends only on the 
velocity difference between the compared systems. In general, kinetic quantities 
depend first on velocity in the chosen reference frame, and only indirectly, through 
v = v(xi, t) on the space-time variables. As [25] observed, “Hamilton’s principle 
was first discovered in connection with mechanical systems, where the Lagrangian 
turns out to be the difference between the kinetic and potential energies, but the 
principle is easily extended to include velocity-dependent forces of certain types”, 
including, e.g., the magnetic force on a moving, electrically charged particle. 

                                                 
1 Let we make a few remarks  in addition to the conjecture of the “unique” transformation. As [27] stated, “In contrast to the 
symmetry or invariance requirement in STR, the principle in GTR is most often presented as strictly speaking a covariance 
requirement.” Gauge theories behave like GTR, at least in this respect. General covariance “is not tied to any geometrical 
regularity of the underlying spacetime, but rather the form invariance (covariance) of laws under arbitrary smooth coordinate 
transformations” [27, p. 34]. Weyl [28] found that the more general geometry resulting from admitting local changes called 
gauges described not only gravity but also electromagnetism. He showed also that the conservation laws of Noether follow in two 
distinct ways in theories with local symmetries. This led to the Bianchi identities, which hold between the coupled equations of 
motion, and which are due to the local gauge invariance of action. Later [29] demonstrated that the conservation of the electric 
charge followed from the local gauge invariance in the same way as does energy-momentum conservation from co-ordinate 
invariance in GTR. 
2 According to Higgs [30]: “The idea that the apparently approximate nature of the internal symmetries of elementary-particle 
physics is the result of asymmetries in the stable solutions of exactly symmetric dynamical equations, rather than an indication of 
asymmetry in the equations themselves, is an attractive one.” Please, compare this notice with Wigner’s concern [31]! 
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It is not surprising that phenomena related solely to the kinetic part of the 
Hamiltonian (T) can be described in a velocity dependent, i.e., kinetic field DT = 
D[v(xi, t)] where the dependence on the local co-ordinates is indirect. This does not 
disclose the possibility of localisation of the theory in space-time, however, it does 
not ensure it automatically. Local symmetry in a kinetic field means that the 
objects, fields or physical laws in question are invariant under a local 
transformation, namely under a set of continuously infinite number of separate 
transformations with an arbitrarily different one at every velocity in the given 
reference frame. 

The isotopic field charge (IFC, ך) as a property can be identified in the case of 
the gravitational field with the properties of the masses of gravity and inertia 
respectively. The potential isotope of ך (ךV) depends directly on space-time co-
ordinates. The physical state of the kinetic isotope of ך (ךT) depends primarily on 
the components of its velocity (and indirectly on its space-time co-ordinates). 
When we try to specify physical phenomena that distinguish kinetic behaviour of 
objects from their behaviour in a field caused by another, potential source (i.e., ךV) 
we should make attempt to seek for a description in a velocity dependent field.  

Mathematical proof of the conservation of Δ 
 
For the sake of the description of the mentioned distinction, we introduce a 

gauge field Dμ, that depends primarily on velocity. We derived a set of conserved 
currents in such a field [18]. The mathematical treatment is as much general as 
possible, while we made a specification. Namely, Noether’s second theorem allows 
the dependence of the concerned fields (on which the Lagrangian depends) on any, 
general co-ordinate. Certain physical theories restrict themselves on the four space-
time co-ordinates as dependent variables. We discuss fields that depend on co-
ordinates in the velocity four-space, (and handle the space-time co-ordinates as 
indirect variables). 

For the effects of a general non-Abelian group on the local gauge invariance are 
to be described, we refer to the [25] review paper. We partially use the methods of 
his description of YM type gauge fields. We introduce a new type of localised 
gauge field that does not coincide with the isotopic spin’s YM field, marked by B 
in [24] and [25]; this field, marked by D, is per defintionem different from the YM 
field.3 In our discussion, the D gauge field, introduced below, depends directly on 
the velocity-space coordinates, while the matter field depends directly on the four 
dimensional space-time co-ordinates. In other words, this means that although we 
primarily use coordinates of the velocity-space, our derivations are indirect and 
include derivatives with respect to the space-time co-ordinates (cf., the 
introduction of the relativistic λμ

ν  tensor below) and play important role in our 
conclusions. This is an expression of the facts that we observe the physical events 
(occurring even in the velocity space) with respect to the 4D space-time, on the one 
                                                 
3 Although we use the letter “D” to denote this gauge field, in [25] and many other publications that letter denoted the covariant 
derivative, which we will mark by careted (capped) derivation mark ∂̂ . 
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hand, and that our operators should effect complex ψ(xν) fields which depend on 
the four space-time co-ordinates, on the other. 

We extend the role of the co-ordinates to a set of generalised variables alike 
Noether [32] did. These variables may be the four space-time co-ordinates or they 
may be others (and their number may vary). In her mathematical terms of invariant 
variational problems, the space-time co-ordinates did not play a distinguished role. 
According to her second theorem, other variables, among others (e.g., velocity-
space co-ordinates), are allowed which may implicitly depend on the space-time 
co-ordinates. For practical reasons we replace the ( , )f x x&μ ν  dependence with a 

( ( ))f x xμ ν& dependence. The localisation is present here too (in the above generalised, 
Noetherian sense), although it makes us possible another way of calculating it. 

We were seeking for invariance between scalar fields and (gauge) vector fields 
that describe kinetic processes, the latter depending therefore primarily on velocity. 
For this reason, we consider Lagrangians which depend on matter fields ϕk , and 
gauge fields ,Dμ α& , which all depend – in simple mathematical terms – on 
parameters.  In physical terms these parameters are generally identified with the 
four space-time co-ordinates. In our specific case the dependence of D on xμ will 

be given by the formula: )(
4x

xDD
∂
∂

=
μ

μμ .  The 2nd theorem of Noether is just about 

Lagrangians, which depend on arbitrary number of fields with arbitrary finite 
number of derivatives by arbitrary number of parameters. We can apply her 
theorem here because in mathematical terms she did not specify either the 
physical-mathematical character or the number of applicable parameters. Our 
consideration will be justified by the final result, which demonstrates that in a 
boundary situation, namely in the absence of a velocity-dependent gauge field we 
obtain the same currents that were derived in a space-time dependent field, (cf. 
Eqs. (4) and (7) below).  In other words, in the absence of relativistically high 
velocities or acceleration, the effect of the velocity dependent gauge field can be 
neglected, and we get back to the same currents as derived in the semi-classical, 
only space-time dependent gauge’s case. At the same time, in the presence of a 
velocity dependent gauge field, we derived new conserved Noether currents [18]. 

Noether's currents for gauge invariance localised in the velocity space 
The presentation discusses general, non-Abelian case. Let's first introduce a 

(kinetic) D field localised in the velocity space. We introduce a λμ
ν  tensor, which 

characterizes the changes of the velocity-space components in the space-time. 
Localization will be taken into consideration in this way (we refer to the 
generalized interpretation of localization as defined above).4   

In general, we base on a transformation group G and the transformations of its 
elements, where the number of parameters are arbitrary finite numbers  (α = 1,...,ρ ); 
, ( β = 1,...,σ ) . The p are parameters on which the transformations, constituting the 

                                                 
4 Relativistic covariance under Lorentz transformation S(Λ) and its consequences are a standard part of quantum field theory 
textbooks for long, e.g., [33, Sec. 2.1.3]. Here we take into account time derivatives of Lorentz transformed velocities. 
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group elements, depend. They take the form of functions   
pα (xβ )  and their 

derivatives. The group transformations depend on p and are finitely differentiable. 
G may take the form of different groups, depending on the concrete form of 
interaction in subject, namely SO(3,1), U(1), SU(2), SU(3) in the cases of the 
fundamental physical interactions. 

We consider a Lagrangian density ,( , )kL Dμ αϕ & , whereϕk , (k = 1, ..., n) are the 
matter fields - which also includes the velocity field ( )x x xμ μ

ν=& &  - and ,Dμ α& , 
(  α = 1,..., N ), are the (kinetic) gauge fields. We assume, that ,( , )kL Dμ αϕ &  is 

invariant under the local transformations of a compact, simple Lie group G 
generated by  Tα , (  α = 1,..., N ) and C

αβ

γ  are the so-called structure constants, 
corresponding to the actually considered individual physical interaction’s 
symmetry group.5 For examples, in the case of SU(2) symmetry, G consists of 
 2 × 2 matrices with 3 independent components, representing a state doublet, and in 
the case of SU(3) its matrix has 8 independent components, representing a state 
triplet. For simplicity we assume that the matter fields belong to a single, n-
dimensional representation of G. 

The infinitesimal transformations of the matter- and the gauge fields determine 
the covariant derivatives of ψ in the gauge field. (For invariance, we can require 
that the derivatives of ψ coincide with the derivatives of 'Vψ ). The infinitesimal 
transformations can be formulated as follows:  

ZS =)( 2
3π    (k = 1, ..., n),            (1) 

where the  Tα  are matrix-representation operators generating the group G and 

,,,

,,,

5

~

5
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  (  α = 1,..., N )  (2) 

where 
x

ρ
ρ

∂
∂ =

∂
&

&
, and ג (Hebrew g, gimel) denotes a general coupling constant, 

which can be replaced by a concrete coupling constant for each individual physical 
interaction.  

For the induced infinitesimal transformation δ L  of the Lagrangian density using 
the field equations for both the matter and the gauge fields, one obtains 

αν
ανμμ

μ δδϕ
ϕ

δ ,
, )()(

( D
D
LLL k

k ∂∂
∂

+
∂∂
∂

∂= .                 (3) 

One would like to describe the events, resulted in the interaction between the 
matter field and the kinetic (velocity-space dependent) gauge field, as they are 
observed from the usual 4D space-time. Therefore one needs to apply derivatives 
by the space-time co-ordinates.  

We have derived from here the following two sets of equations: 
                  ν

αμ
ν

α
)1()1( )( FxJ ∂=        0)1( =∂ ν

αν J               (4) 
              ν

αμ
ν

α
)2()2( )( FxJ ∂=       0)2( =∂ ν

αν J               (5) 
                                                 
5 We partly follow the clues by Higgs [30] and Weinberg [34] at the beginning of their papers with the exception that we consider 
different dependencies in the potential and kinetic Hamiltonian terms. 
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completed with  
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0
( ) ( )

L L
D D

ρ ρ
ν μ

μ ν α ν μ α

λ λ∂ ∂
+ =

∂ ∂ ∂ ∂& &

         (6) 

this set (4)-(6) demonstrates, that in the presence of a kinetic (velocity-
dependent) gauge field, there exist two (families of) conserved Noether currents.  

Although the two conserved currents are not independent, in the presence of a 
kinetic gauge field they exist simultaneously. (One can easily see, that λμ

ν  mixes 
the components of the gauge-field currents depending on the 4D velocity space in a 
similar way, like the Lorentz transformation mixes the co-ordinates of four-vectors 
in the 4D space-time; since the λμ

ν  tensor was defined to characterise the changes 
of the velocity-space components – accelerations – in the space-time.) 

Taking into account the conditions how we have obtained these currents, one 
can write   Jα

(1)μ as 

klkl
k

TLixJ ϕ
ϕ α

ν

ν
α )(

)(
)()1(

∂∂
∂

=&                         (7) 

The most significant conclusion of the above cited derivation (cf., [18]) is that in 
the presence of a kinetic gauge field D, there appear extra Jα

(2)ν  conserved currents. 
Taking into account conditions of the derivation of Jα

(2)ν , one can write it in the 
form 

)()(])(
)(

[)( )2()1( xFxDCTLixJ klkl
k

μν
γ

ω
μωβ

γ
ωβ

μ
να

ν

ν
α λλϕ

ϕ
×−
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∂

= &                 (8) 

Their dependence on the velocity-space gauge is apparent, although, none of the 
conserved vector currents involve the gauge parameters ( )p xα &  and their derivatives.  

From (4) and (7), considering consequences of (6), one obtains 
)()(

)(
)()1( xTLixF klkl

k

&& ϕ
ϕ α

ν

ν
αμ ∂∂

∂
=∂                (9) 

From (5) and (8), considering the concrete forms of the covariant derivatives, 
one obtains 

ν
μα

ν

ν
αμ λϕ

ϕ
)()(

)(
)()2( xTLixF klkl

k

&&
∂∂
∂

=∂             (10) 

Mathematical and physical conclusions  
 

First conclusion – of the conserved Noether current (4) – is a conserved 
quantity: Conservation of the field charge (ך).  

Second conclusion – of the conserved Noether current (5) – is another conserved 
quantity: Conservation of the isotopic field charge spin (Δ). Further, we could 
derive, in the usual way, the total isotopic field charge spin 

( 2) 4 3di J x
ג

Δ = ∫   

which is independent of time and independent of Lorentz transformation. J(2)µ 
does not transform as a vector, while Δ transforms as a vector under rotations in 
this isotopic field charge spin field.  
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Coupling of the two conserved quantities (ך and Δ), what is based on the 
dependence of the two currents Jα

(1)μ  and (2)J μ
α  on each other, has physical 

consequences. The quantities, whose conservation they represent, and which are 
coupled (by x= ∂ &ν ν

μ μλ ), exist simultaneously. The derived conservation law verifies 
just the invariance between two isotopic states of the field charges, namely 
between the potential ךV and the kinetic ךT what we intended to prove. We 
obtained, that in the presence of kinetic fields we have two conserved currents that 
are effective simultaneously. The kinetic gauge field D is present simultaneously 
with the interacting matter [φ] and gauge [B] fields. The presence of D corresponds 
to the property of the field charges ך of the individual fields that they split in two 
isotopic states, and analogously to the isotopic spin, we named these two states 
isotopic field charge spin what we denoted by Δ. The source of the isotopic field 
charge spin (Δ) is the field ( )x&ϕ , in interaction with the kinetic gauge field D. 

The physical meaning of Δ can be understood, when we specify the 
transformation group associated with the D field, which describes the 
transformations of ך (i.e., the isotopic field charges). ך can take two (potential and 
kinetic) isotopic states ךV and ךT in a simple unitary abstract space. Their symmetry 
group is SU(2), that can be represented by 2x2 Tα matrices. There are three 
independent Tα that may transform into each other, where the structure constants 
can take the values 0, ±1. Let T1 and T2 be those which do not commute with T3; 
they generate transformations that mix the different values of T3, while this "third" 
component's eigenvalues represent the members of a Δ doublet. For the isotopic 
field charges compose a ך doublet of ךV and ךT, the field’s wave function can be 
written as  

T

V

ψ⎛ ⎞
ψ = ⎜ ⎟ψ⎝ ⎠

.               (11) 

(11) is the wave function for a single particle which may be in the “potential 
state”, with amplitude ψV, or in the “kinetic state”, with amplitude ψT. ψ in (11) 
represents a mixture of the potential and kinetic states of the ך, and there are Tα that 
govern the mixing of the components ψV and ψT in the transformation. Tα (α = 1, 2, 
3) are representations of operators which can be taken as the three components of 
the isotopic field charge spin, Δ1, Δ2, Δ3 that follow the same (non-Abelian) com-
mutation rules as do the Tα matrices, [Δ1, Δ2] = iΔ3, etc. These operators represent 
the charges of the isotopic field charge spin space, and ψ are the fields on which 
the operators of the gauge fields act.  

The quanta of the D field should carry isotopic field charge spin Δ.  The Δ 
doublet, as a conserved quantity, is related to the two isotopic states of field 
charges (ך), and the associated operators (Δi) induce transitions from one member 
of the doublet to the other. 
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HOW TO INTERPRET THE ISOTOPIC FIELD CHARGE SPIN 
CONSERVATION? 

Invariance between ךV and ךT means that they can substitute for each other 
arbitrarily in the interaction between field charges of any given fundamental 
physical interaction. They appear at a probability between [0, 1] in a mixture of 
states in the wave function ψ (11) so that the Hamiltonian of a single particle 
oscillates between V and T, while the Hamiltonian of a composite system is a 
mixture of the oscillating components of the particles that constitute the system. 
The individual particles in a two-particle system are either in the V or in the T state 
respectively, and switch between the two roles permanently; while the observable 
value of H is the expected value of the mixture of the actual states of the two, 
always opposite state particles.  

Mediating bosons (δ) 

The invariance between ךV and ךT (what is ensured by the conservation of Δ), 
and their abilitiy to swap, means also that they can restore the symmetry in the 
physical equations which was lost when we replaced the general ך (in our case 
mass m) by their isotopes ךV and ךT  (concretely mV and mT).6  

We denote the predicted quanta of the D field by δ. We call this hypothetical 
boson "dion", after the Greek term meaning ‘flee’, ‘flight’, ‘rout’ in English. The δ 
quanta (dions) carry the Δ (isotopic field charge spin as a physical property: charge 
of the D field). According to the IFCS model, gravitational interaction takes place 
between two massive particles with the simultaneous exchange of a graviton and a 
dion.  

 
Starting from the equivalence principle, through the qualitative distinction of the 

masses of gravity and inertia as isotopic field charges of the gravitational field and 
interaction between them, we concluded the prediction of a boson that mediates 
their interaction.  

One of the main consequences of the isotopic field-charge spin conservation was 
the prediction of the dions, as bosons that mediate between the two isotopic states 
of the field charges. At the same time, experimental observation of dions my serve 
as a decisive test for the appropriateness of the presented theory. 

 

 
 
 

                                                 
6 Consequences of the application of effective field theories were analysed e.g., in philosophy by E. Castellani [35]  and in 
physics by S. Weinberg [23]. 
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The presence of isotopic field­charges demands Finsler geometry 
 
Another consequence is the appearance of Finsler spaces in the gravitational 

theory. Specify (9) for the gravitational field [36]! The right side of the equation 
contains the scalar field that serves for the source of the gravitational field. The ג 
can be replaced by the gravitational coupling constant g. As we noticed, the 
dependence on the gauge fields is on the left side of the equation (9). (1) ( )F x&μν

α must 
satisfy the  

1
4

T F F g F g Fκσ λρ
μν μλ λν μν λσ κρδ= +  

identity for the energy-momentum tensor Tµν. (In order to bring this form in 
compliance with the indices in (9), one should raise the indices by multiplying with 
the metric tensor gβγ in the right side.) This energy-momentum tensor Tµν can be 
expressed by the way of the Einstein equation 

1 1( )
8 2N

T R Rg g
Gμν μν μν μνπ

= − − + Λ          

  (12) 
where Rµν is the Ricci tensor defined 

by the help of the derivatives of the 
metric tensor gµν, R is the Ricci scalar 
formed from the Ricci tensor (Riemann 
curvature) and the metric tensor, and Λ is 
a constant of Nature, as well as GN the 
constant of Newton. 

The metric tensor gµν and its 
derivatives depend on the localisation of 
the given point in the space-time in the 
General Theory of Relativity (GTR), and 
are subject of Riemann geometry. In the 
presence of a kinetic field, that means, 
isotopic mass field D (mass being the field-charge of the gravitational field), 
however, the curvature depends also on velocity. (Whose velocity? On the actual 
inertial velocity of a test unit-mass placed in a given space-time point in the 
reference frame fixed to the source of a scalar gravitational field φ which appears 
on the right side of (9).) The gµν metric tensor, and consequently the affine 
connection field and the curvature tensor formed from its derivatives, depend on 
space-time and velocity co-ordinates. With the appearance of the dependence on 
the velocity vector, the curvature becomes dependent on its direction in each 
space-time point. The direction (additional parameter) attributed to each space-
time point is defined by the orientation of the velocity of a test unit-mass in the 
given space-time point, 

v
v . The curvature can no more follow a “simple” Riemann 
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geometry, it follows a Finsler geometry whose metric is defined by the dependence 
of  gµν on (xσ  and) xρ& . 

Of course, the space-time plus four-velocity dependence of the metric tensor gµν 
affects its all derivatives, including the formation of the affine connection field 
(from first derivatives) and the Riemann curvature (or Ricci tensor, second, 
covariant derivative)  

1
2

g g gλμν μ λν ν λμ λ μν⎡ ⎤Γ = ∂ + ∂ − ∂⎣ ⎦       gλ λρ
μν ρμνΓ = Γ  

and  
R λ λ λ σ λ σ

μν μ νλ λ μν μσ νλ σλ μν= ∂ Γ − ∂ Γ + Γ Γ − Γ Γ  
The solution of the Einstein equation in velocity dependent field with Finsler 

geometry must necessarily lead to solutions different from those based on the 
“classical GTR” in permanent curvature space (like the solution by Schwarzschild 
and its later corrections). 

WHAT ROLE DOES THE CONSERVATION OF THE  
ISOTOPIC FIELD-CHARGE SPIN PLAY? 

The role of equation (12) is to retain the invariance between the two isotopic 
forms, namely gravitational and inertial, of masses. The importance of this is to 
save the covariance of our equations. Since there appear two different kinds of 
(isotopic) masses in the energy-momentum “four-vector” (in the fourth column of 
Tµν,) it does no more transform as a vector, and Lorentz transformation can no 
more guarantee alone the covariance of our equations. 

As a consequence of the distinction between mV and mT, as well as the 
association of the energy content with the mass mV and the components of the 
momentum with mT, we lose also the symmetry of the Tµν energy-momentum 
tensor. To retain symmetry in Einstein’s field equations we must require again the 
invariant transformation of mV and mT into each other in an appropriate gauge field, 
namely in D. We refer to [25] who foresaw the possible generalization of YM type 
gauge invariance in general relativity “in close analogy with the curvature tensor”.  
If we consider the energy-momentum tensor (in which both isotopic states of mass 
appear) as the source of the gravitational field, then – in the usual way – the scalar 
and the vector potential can be separated. See, m4 in T44 does not compose a fourth 
component of a four-vector in the classical theory of gravitation where there is a 
single scalar mass. If we consider now m4 = mV, the three components of the kinetic 
mass mT can compose a three-vector, however Tµ4 will not form a four vector 
either.  

To maintain the Lorentz invariance of our physical equations in the gravitational 
field, we must demand to restore the invariance of   T

V

m
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

r

 under an additional 

transformation that should counteract the loss of symmetry caused by the 
introduction of two isotopic states of mass. We discussed that transformation in 
section 2. Further, in the case of gravitation the relation of the scalar and the vector 
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fields are not linear even if we have not made distinction between the potential and 
kinetic masses. The non-linearity is coded in the relation of the tensors [26] at the 
right side of the Einstein equation (12) (in units c = 1), or  we can write 

8G g GTμν μν μνπ+ Λ = where the Einstein tensor is defined as 1
2

G R Rgμν μν μν= −  whose 

covariant derivative must vanish. 
Since our Tµν tensor has already lost its symmetry, we can take Λgμν  into account 

within a modified T’µν – handling the gravitational and kinetic masses in it together 
with the dark energy – and we get the following formally symmetric equation: 

'8G GTμν μνπ= .   
The symmetry of the energy-momentum tensor can be saved by the invariant 

gauge transformation of the IFCS. The most important analogy is between the 
behaviour of the potential and the kinetic field charges of the individual fields that 
makes probable to postulate a unique transformation to assure their invariance (cf., 
section 2).7 So the invariance under the Lorentz transformation combined with the 
invariance of the isotopic field charge spin field provide together the covariance of 
the gravitational equation. However, this combined transformation should now be 
taken into consideration in a field with a metric depending on all space-time and 
velocity co-ordinates, following a Finsler geometry. 

Comparison of the invariance properties in classical GTR and in the IFCS 
model 

In classical physics, conservation laws – as consequences of the invariance 
properties of the investigated systems – can be obtained by integration of the 
Euler-Lagrange equations of motion of classical mechanical point systems. 
According to Hamilton’s principle the variation of the action integral of the 
system’s Lagrangian must be zero. These conservation laws include the 
conservation of the energy – invariance under translation in time. That conserved 
energy is equivalent with a well determined amount of mass E = mc2, where m = 
mV is gravitational mass, and this conservation law does not provide any 
information on the quantity of kinetic mass. 

In general relativistic treatment, the source of the gravitational field is the Tµν 
momentum-energy stress tensor, which includes the sources of inertial and 
gravitational effects as well. Applying the same variational method and integration 
for the Einstein equation (using [+ + + –] signature) we derive the conservation of 
the –T44 element of the Tµν momentum-energy stress tensor. –T44 is energy density 
of the gravitational field, and is proportional to a certain amount of mass. 

                                                 
7 As [27] stated, “In contrast to the symmetry or invariance requirement in STR, the principle in GTR is most often presented as 
strictly speaking a covariance requirement.” Gauge theories behave like GTR, at least in this respect. General covariance “is not 
tied to any geometrical regularity of the underlying spacetime, but rather the form invariance (covariance) of laws under arbitrary 
smooth coordinate transformations” [27, p. 34]. [28] found that the more general geometry resulting from admitting local 
changes called gauges described not only gravity but also electromagnetism. He showed also that the conservation laws of 
Noether follow in two distinct ways in theories with local symmetries. This led to the Bianchi identities, which hold between the 
coupled equations of motion, and which are due to the local gauge invariance of action. Later [29] demonstrated that the 
conservation of the electric charge followed from the local gauge invariance in the same way as does energy-momentum 
conservation from co-ordinate invariance in GTR. 
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According to invariance under translations in the Minkowski space (Lorentz 
transformation) the conserved current can be written in the form 

0r
r

LT Lμ μν μ μν ν
μ

δ ϕ
ϕ

⎛ ⎞∂
∂ ≡ ∂ − ∂ =⎜ ⎟⎜ ⎟∂∂⎝ ⎠

 

where φr denote functions on which (and their first derivatives) the Lagrangian 
may depend. 

The Einstein equation 
1 8
2

R Rg g GTμν μν μν μνπ− + Λ =
 

provides the elements of Tµν in which – according to the left side – the 
contribution of the kinetic and potential components are mixed by the gµν 
curvature tensor. Applying the usual integration method and Gauss’ theorem, we 
get the fourth column of the momentum-energy stress tensor for a conserved 
quantity, what is no else than the four-momentum density, which behaves like a 
four-vector and whose individual components are 

4
1 dP T V
icν ν= ∫  

or separated 

4
4

1 1d dk k k i
i

LP T V V
ic ic

ϕ
ϕ

∂
= = ∂

∂∂∫ ∫
              (k = 1, 2, 3); 

4 44 4
4

d ( )di
i

LH icP T V L Vϕ
ϕ

∂
= − = − = ∂ −

∂∂∫ ∫
 

what are considered the conserved total momentum and energy of the field 
respectively. 

If we take into account the qualitative difference between the masses mT  (what 
appear in the components of Pk) and mV (what appears in H) that are mixed by the 
curvature tensor gµν in the elements of Tµν, this consideration will involve the 
mixed mT  and mV dependence of the Lagrangians as well. As a consequence, Pk 
and H cannot be considered separately, and independently of each other, conserved 
quantities. (We do not investigate here the ambiguous interpretations of invariant 
mass.) The covariance of the gravitational equation can no more be secured by the 
Lorentz invariance alone. The lost symmetry of nature can be restored only with 
the shown invariance between the isotopic mass states (as field charges of the 
gravitational field, conservation of Δ) which are rotated in an isotopic field charge 
spin gauge field. The covariance of the gravitational equation is a result of 
invariance under the combination of the Lorentz transformation and rotation in the 
isotopic field charge field. In the latter case the four components of (Pk[mT], 
H[mV]) transform as isovectors. Due to the IFCS gauge transformation, the 
transformation of the field components can be described in a (space-time +) 
velocity dependent gauge field, whose metric, consequently, depends also on the 
velocity components, and is subject of a Finsler geometry. 
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A cluster calculation for 6He spectrum 

I. Filikhin, V.M. Suslov and B. Vlahovic  

North Carolina Central University, Durham, NC, 27707, USA  

Abstract. The 6He nucleus is considered as the cluster nn ++α  system. The 
excitation energies of the low-lying levels for this nucleus are calculated 
using the configuration-space Faddeev equations. The analytical continuation 
method in a coupling constant is applied for calculation of resonance 
parameters. The nα  interaction is constructed to reproduce the results of R -
matrix analysis for nα -scattering data. A realistic AV14 potential describes 
the nn  interaction. Additional three-body potential adjusted by the ground 
state energy of 6He is used. The energies of the low-lying resonances of 6He 
(0+, 2+, 1-, 2-) are reasonably reproduced by the calculations.  
Keywords: Properties of nuclei; nuclear energy levels; 6 ≤ A ≤ 19; 
Cluster models; Few-body systems.  
PACS: 21.10.-k; 27.20.+n; 21.60.Gx; 21.45.-v. 

INTRODUCTION 

We study the cluster phenomena in light nuclei [1] using three-body cluster 
models. Particularly, the cluster nn ++α  and n++αα  systems are considered as 
appropriate for description of the 6He and 9Be nuclei. In the present work we focus 
on a model for the nα  inter-cluster interaction, which has to reproduce the set of 
the experimental data as well as the nα  scattering data and low-lying spectrum of 
6He and 9Be. In Ref. [2] we proposed an nα  potential that was constructed to 
reproduce the results of R -matrix analysis for nα -scattering data [3]. This potential 
is a modification of the potential given in [4]. The potential allows us [2] to 
describe the low-lying spectrum of 9Be closely to the experimental data. The same 

nα -potential is applied for description of low-lying spectrum of the 6He nucleus. 
We show that the energies of the low-lying resonances of 6He ( +0 , +2 , −1 , −2 ) are 
reasonably reproduced by our calculations.  

Spectral properties of this nucleus have been calculated within cluster model 
in a number of works [4-10]. It has to be noted that the present calculations 
reproduce the energy of the −1  levels evidenced by the experiments [11]. These 
levels have not been found by the previous calculations [8-10], except by the 
calculations [4] that, however, are far from the experimental data.  

Short description of the model assumptions and the methods of calculations: 
The calculations are based on the Faddeev equations in configuration space. The 
LS  scheme is used for partial wave analysis and the model space is restricted to the 
states with the total spin 0=S , due to a weak interaction between nucleons in the 
spin-isospin state “triplet-triplet” ( 1=s , 1=t ) that corresponds to the total spin of 
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the system 1=S . To evaluate the parameters of the resonances, applied is the 
analytical continuation method in a coupling constant. The constant is the strength 
parameter of non-physical three-body potential [2]. Additional adjustment of the 
model was made to reproduce the experimental value for the ground state of the 
6He nucleus. As it is well known previously [4-8] the three body model 
calculations with pair potentials do not lead to the experimental value. Following 
[4-8] we adjust the calculated ground state energy of the nn ++α  system using 
three-body potential given as one range Gaussian with attraction. This effective 
potential forms essentially the low-lying spectrum of the nn ++α  system.  

MODEL AND METHODS 

The 6 He nucleus is described by three body nn ++α  model as two-neutron halo 
nucleus. Strong clusterization of the alpha-particle is assumed in the nucleus. The 
bound state of the nucleus is the +0  state. Due to the Pauli principle for the system 
of five nucleons, the s-wave configuration of the nα  subsystem is suppressed for 
the system, since the p -shell configuration dominates. The n+α  and nn +  
subsystems of nn ++α  are unbound: it is the Borromean type of nucleus [4]. 

Our calculations are based on the Faddeev equations in configuration space. 
The total wave function of the nn ++α  system is decomposed to the sum of the 
Faddeev components U  and W  that correspond to the two channels α)(nn  and nn)(α  
of the particles rearrangement, respectively:  

WPIU )( ++=Ψ , 
P  is permutation operator for identical particles. In this notation the differential 
Faddeev equations are given as 
 

 
).()(
),()(

0

0

PWUVWEVH
PWWVUEVH

nn

nnnn

+=−+
+=−+

αα
  (1) 

 
The LS  scheme is used for partial wave analysis of the equations [2,12]. The 

LS  basis allows us to restrict the model space to the states with the total spin 0=S . 
The possible configurations with 1=S  are not taken into account in our 
calculations. It can be noted that nα  potential used for this calculation has spin-
orbital component that fixes the configuration 0=S  and 1=S  within the total 
momentum representation. According to the evaluations of different authors the 
total contribution of the 1=S  configuration is ranged from 5% to 14% for the 

nn ++α  ground state [5].  
The nα  interaction nVα  is taken into account in s , p  and d  states. The p  and 

d -wave components include central and spin-orbit parts: )(),()()( rVlsrVrV so
l

c
l

n +=α . 
The coordinate dependencies of the components have the form of one- or two-
range Gaussians [2]. The s -wave component is repulsive [3,6,13] to simulate the 
Pauli exception for nα  in the s -state. This nα -potential proposed in our work [2] is 
modified potential given in Ref. [4]. 
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The Argonne V14 (AV14) potential [14] was used for the -interaction. 
Comparing the potentials of singlet-triplet ( 0=s , 1=t ) and triplet-triplet ( 1=s , 1=t ) 
spin-isospin states it was assumed that the triplet ( 1=s ) components are essentially 
weaker. According to this fact we ignored the 1=S  three-body wave function 
component. 

An effective three-body force simulating the effects of violation of the 
strong cluster structure of 6He [4,6] is taken into account. Two reasons for such 
violation may be noted: the first is that the 3 H+ 3 H threshold is close to the energy 
region considered (~12 MeV) [5] and the second is the use of the cluster model 
with “frozen core” [15]. The three-body L -independent potential is defined by one 
range Gaussian: )exp()( 2

03 αρρ −= VV bf . Here ρ  is hyper-radius of the tree-body 
system: 222 yx +=ρ , where x , y  are the mass scaled Jacobi coordinates [2]. Adding 
this potential into left hand side of the Faddeev equations (1) one can reproduce the 
experimental value of the 6He binding energy. The adjustment is governed by the 
two free parameters 0V  and α . 
 Bound state problem formulated by the configuration space Faddeev 
equations (1) was numerically solved applying the finite deference method with 
the spline collocations [16]. The eigenvalues are calculated by the method of 
inverse iterations was used. 
 The method of analytical continuation in a coupling constant was used to 
calculate parameters of the resonances. The coupling constant is the depth of non-
physical tree-body potential having a form of one range Gaussian. This potential is 
considered as perturbation corresponding Hamiltonian and is added to the left hand 
of the equations (1). The potential has form: )exp()( 2

3 αρδρ −−=V  with parameters α , 
≥δ 0 that can be varied. For each resonance there exists a region |δ| ≥ | 0δ | where a 

resonance becomes a bound state. In this region we calculated 2 N  bound state 
energies corresponding to 2 N  values of δ. The continuation of this energy set as a 
function of δ  onto complex plane was carried out by means of the Pade 

approximant [2]: )1/(
11

∑∑
==

+=−
n

i

i
i

i
N

i
i qpE ζζ , where δδζ −= 0 . The complex value of 

the Pade approximant for δ=0 gives the energy and width of resonance: 

2
)0( Γ

+== iEE rδ . Accuracy of the Pade approximation for the resonance energy and 

width, depends on the distance from the three body threshold, and orders N  of the 
Pade approximants. 

RESULTS 

Using the three-body s -wave potential defined by the parameters: 661.10 −=V  MeV 
and 2.0=α  fm 2−  we obtained for the nn ++α  ground state -0.9725 MeV, which is 
close to the binding energy of 6 He (-0.973 MeV) [11]. The orbital momentum 
configurations taken into account for this calculation are shown in Table 1. The 
calculation convergence for the binding energies relative to increasing model space 
is fast. The main contribution that provides the bound state of the system is coming 

nn
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from the p - wave of the nα  interaction, due to attractive p - wave component of the 
nα  potential [2].   

 Note that the calculation without the three-body potential does not produce 
bound system.  
 
TABLE 1. Orbital momentum configurations for two type of the Faddeev components ( α)(nn  or 

nn)(α ) for the +0 state (total spin 0=S ) and binding energy E  of nn ++α  system. l  is orbital 
momentum pair of particles, λ  is orbital momentum, relative motion of the third particle to the 
center of mass of the pair. 
 
 α)(nn  nn)(α E (MeV) 
l  0 2 4 0 1 2  
λ  0 2 4 0 1 2 -0.973 
l  0 2  0 1 2  
λ  0 2  0 1 2 -0.972 
l  0  0 1 2  
λ  0 0 1 2 -0.968 
l  0 0 1  
λ  0 0 1 -0.953 
l  0 2 0 1  
λ  0 2 0 1 -0.957 
l  0 2 4 0 1  
λ  0 2 4 0 1 -0.957 
l  0 2 4 0  
λ  0 2 4 0 not bound 

 
The calculations for the resonances are performed for the +2 , −1 , −2  states. Table 2 
presents the orbital momentum configurations for the Faddeev components 
corresponding to the α)(nn  and nn)(α  rearrangement channels, which are taken into 
account.  
TABLE 2. Orbital momentum configurations for two type of the Faddeev 
components ( α)(nn  or nn)(α ) for the πJ state. l  is particles pair orbital momentum, 
λ  is orbital momentum of relative motion of the third particles toward the center of 
mass of the pair. 
 α)(nn nn)(α  
2+   
l  0 2 2 2 4 0 1 1 2 2 2 
λ  2 0 2 4 2 2 1 3 0 2 4 
1-   
l  0 2 2 0 1 1 2 
λ  1 1 3 1 0 2 1 
2-   
l  2 2 1 2 2 
λ  1 3 2 1 3 
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The results for the parameters of the resonances are presented in Table 3, 
where we give also comparison with the experimental data [11] and results of other 
authors [7-6]. The 12+  resonance, being the first excided state of 6He, has been well 
studied experimentally [11]. Others resonances are not reliably defined. In 
particular, the existing the −1  resonance is discussed [8].  

The calculated resonance widths are comparable to the experimental data; 
the narrow resonance ( 12+ ) is reproduced as relatively narrow one, the broad 
resonances are calculated as broad ones. The best fit for measured energy we 
obtained for the +0  and −1  levels. The same accuracy for the energy of the levels of 

12+  and −2  was not be reached.  
TABLE 3. Ground state (

1
0+ ) energy and parameters of the resonances ),( ΓrE  for 

the +0 , +2 , −1  states in He. Energy is measured from the nn ++α  threshold. 
State  

πJ  
Calculations 

),( ΓrE  
Exp.  

),( ΓrE  

 -0.973 -0.973 
 (2.(1), 1) (0.822 ± 0.025, 0.113 ±

0.020) 
 (4.3, 6) (4.6 ± 0.3, 12.1 ± 1.1) 
 (4.5, 5)  
 (4.9, 9)  
 (13.(3), 12) (13.6 ± 0.7, 7.4 ± 1.0) 
 (17, 16)  

 

The present calculations predict two levels for each +0 , +2 , −1  state. We 
compare our results for the energy spacing between the first and second level of 
these states with the experimental data and others calculations. The results are 
listed in Table 4. Again we see good agreement between our results and the 
experimental data. Note that the previous calculations do not reproduce the 
experimental results for the −1  state. 

TABLE 4. Results for the energy spacing between the first and second level of each state 
+0 , +2  and −1 . 

                                 )0)(( 12
+− EE , MeV   )2)(( 12

+− EE , MeV        ( )1)(12
−− EE , MeV  

Danilin et al. [7]                        6.38                                1.9                                           
not found 
Kato [8]                                     4.67                                1.54                                         
not found 
Pieper [17]*                               6.1                                  2.8                                               
---         
Our                                             5.5                                  2.8                                                
9.0 
Exp. [11]                                     5.6                                  3.8                                           
9.0 ± 0.7 
__________________________________________________________________ 
*GFMC calculation with the AV18+IL2 potentials. 

6

10+

12+

11−

20+

22+

21−

12−
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 From the comparison we can generally conclude that new proposed 
potentials for -interaction and three-body force gives the reasonable description 
for the low-lying spectrum of 6He. The illustration for this statement is presented in 
Fig. 1 where the experimental data for low-lying energy levels of 6He from [11] 
and results of the calculations are shown together.  
 

 
FIGURE 1. Experimental data and results of the calculations for low-lying energy levels of 6He.  

 
We used Pade approximation with the method of the analytical continuation 

in coupling constant. Details of the numerical procedure are illustrated in Fig. 2. 
The real part of the Pade approximants for the +0 , −1 , +2 , −2  states as a function of 
the δ  parameters is shown. Calculated resonance energies correspond to the value 

0=δ .  

 
FIGURE 2. Real part of the Pade approximants for the +0 , −1 , +2 , −2  states (solid and dashed 
lines). Calculated resonance energies correspond to the value when 0=δ . The energies of bound 

nα
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states for 0>δ are noted by the open and filled squares. Experimental data are shown with 
experimental errors. Energy is measured from the nn ++α  threshold. 
 It has to be noted that the method used for calculation of energy of the 
resonances may lead to some solutions which are not related to the initial problem, 
due to arbitrary three-body potential used. These “non-physical solutions” can be 
separated by applying different range parameter α  for the three-body potential. 
The situation when the different values of theα  parameter give the different 
resonance energy means that it is “non-physical solution”. We made the test for the 
energy of 11−  resonance. In Fig. 3 the result of the Pade-calculations for energy of 
the 11−  resonance are presented for different α  parameters. The same value was 
obtained for 2.0=α  fm-2 and 25.0=α fm-2. This fact confirms that our results for the 

11−  resonance energy are correct. 
 

 
 

FIGURE 3. Real part of the Pade-approximants calculated for the 11−  state. Different values of 
theα  parameters of the non-physical three body potential are used: )exp()( 2

3 αρδρ −−=V . 
 

Our result for energy of the 12+  level disagrees with the experimental data 
given with a good accuracy [11]. To explain this disagreement, we evaluated an 
influence of the three-body potential parameters on the 12+  level resonance energy. 
We changed the parameters of the three-body potential as following 011.30 −=V  fm-

2, 3.0=α  fm 2− . This potential reproduces the ground state energy of 6He. New 
calculated value for the energy of the 12+  resonance is changed insignificantly from 
the previous result and is about 2 MeV. We found that the 12+  energy, closed to the 
experimental data, can be obtained by the strength parameter change to the value 
of 4.4−  fm-2. The parameters of the 12+  resonance with this change are rE =0.9 
MeV and Γ =0.1 MeV. Thus, an effective three-body potential may be modified so 
that the calculations reproduced the experimental data for the 12+  level. Obviously 
this potential cannot reproduce energies of other levels. For example, the energy of 
the 10+  ground state calculated with this potential is -2.707 MeV. We conclude that 
effective three-body interaction ought to have complex dependence on orbital 
momentum configuration of the nn ++α  system. In particular, the 12+  resonance is 
a narrow resonance that differs from other resonances considered. As we see above 
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the range parameter of the effective three-body potential for this state must be 
larger to simulate this small resonance width. Thus one can assume that the spatial 
region of interaction of particles is more compact for the 12+  state.  

The disagreement between the calculated −2  resonance energy and 
experimental data can be related with increasing numerical error of the analytical 
continuation in a coupling constant method for the large resonance energies (about 

rE =12 MeV). 

CONCLUSION 

We have shown that reliable description of the 6He low-lying spectrum within the 
cluster model is possible using the nα  potential proposed in [2] together with the 
three-body potential applied in the presented work. We found that the singlet spin 
configuration ( 0=S ) is dominated for +0 , −1 , +2 and −2  states. Disagreement 
between calculated energy of the 12+  level and the experimental data may be 
related with choice of the effective three-body potential used for rough simulating 
of the complex three-body interaction having place in the 6He nucleus considered 
as the cluster nn ++α  system. 
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Abstract. In the regime of strong quantization the single-electron states are 
considered theoretically in the wide-band semiconductor film placed in a 
homogeneous electrostatic field. For a certain range of values of the external 
field the explicit expressions were obtained for the energy spectrum and 
envelope wave functions of charge carriers in the film. The dependence of the 
parameters of direct intersubband electro-optical transitions in the film on the 
intensity of the external field was also considered. 
Keywords: dipole transitions, electroabsorption, electric field, semiconductor 
film, quantum well.  
PACS: 78.21.Fg, 78.67.De, 78.20.Jq 

1. INTRODUCTION 

The study of low-dimensional semiconductor structures has both purely 
scientific and practical meaning, and is dictated by the needs of rapidly progressing 
modern nanotechnology [1-3]. In quantum wells of thin films, particularly, the size 
quantization along one direction leads to the appearance of new properties of a 
two-dimensional subsystem of current carriers, fundamentally differing from the 
case of bulk sample; it explains their wide application in various quantum 
equipments as an active element [3-7]. As is known, the external electric field, 
along with the geometric characteristics of the system, is one of the most powerful 
modulating factors, enabling purposeful control of the energy spectrum of charge 
carriers and other characteristics of the band structure of sample [8-11]. 
Particularly, the modulation of the optical absorption in quantum wells by means 
of external electrostatic field lies in the fundament of the quantum electro-optical 
modulators and photo detectors [12-16]. Hence, it is clear that of certain interest is 
the theoretical study of the behavior of charge carriers in quantized films in the 
presence of an external electric field, - with a focus of finding the right solution of 
the problem in analytical form, which provides opportunities to identify and 
predict the conditions necessary for the effective formulation of an appropriate 
experiment. It’s worth noting that on a purely theoretical level representation of the 
solution of the problem of electro-optical transitions in quantum well in an 
analytical form is possible only in limited cases of weak and strong fields, when 

mailto:volhar@mail.ru�
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the energy acquired by the particle from the field, respectively, is much smaller or 
much larger than the particle’s energy of size-quantization (see, for example, Ref. 
[8] and references cited therein). In this theoretical work expressions are obtained 
in an analytical form for the energy spectrum and wave functions of charge carriers 
in the film at a time when the external - field, directed along quantization axis, 
varies from zero up to values at which the energy acquired by the particle from the 
field becomes comparable with its energy of size quantization in the film. For this 
range of fields the electro-optical intersubband transitions in the film are also 
considered. 

2. SINGLE-PARTICLE STATES IN FILM IN THE PRESENCE OF 
EXTERNAL FIELD 

The dimensions of the film along the axes yx,  are supposing unlimited, and 
along the quantization axis ( )z  we approximate the film by infinitely deep potential 
well [8]. We assume the external homogeneous field with intensity E

r
directed 

along the positive direction of the quantization axis of the film. Taking into 
account the sign of                                                         electron’s charge )( eq −=  
for its potential energy ( )zU  in the film we will ha have: 

( )
⎩
⎨
⎧

≤≤
≥≤∞

=
LzFz

Lzz
zU

0;
,0;

     
 (1) 

 
where zF qE=  is the force effected by the field on the charge, and the potential 
energy ( )zU  is normalized by the initial condition ( ) .00 ==zU The thickness of the 
film L is assumed much smaller than the Bohr radius of 3D exciton Ba : 

 
BaL <<       (2) 

 
Taking into account the condition (2), the Schrödinger equation for the particle 

motion along the z axis can be written as follows:  
 

( ) ( ) ( ) ( ) ( ) 00;
2 2

22

=====+− LzzzEzFzz
dz
d ψψψψψ

μ
h

  
(3)  

 
where μ  is the  particle effective mass, Е  is its energy along the quantization axis. 
From general considerations it is clear, that in this case, depending on the value of 

the external field, energy levels of the particle ( ),...3,2,1, =nEn  may have either 
higher or lower values of ( ) ( )0 0 maxE F L U z L U z= = = = . In this paper, we consider 
the case, when FLEn > . Physically, this case corresponds to a range of values of 

the external field, where the energy imparted to the particle by the external field is 
less or of the order of the energy of the size-quantization of particle in the film. 

Introducing the notations 
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                                                 ( )2

2 2

2 2, ,E F z g zμ μλ β β= − = =
h h

, 

 
the equation (3) will have the following form 
 

( ) ( )[ ] ( ) ;02
2

2

=+− zzg
dz

zd ψλψ

    
 (4) 

 
By substituting  

     (5) 
 

equation (4) becomes Riccati like equation [ 17 ]: 
 

    (6) 

 
The solution of this equation can be represented as a series 
 

( ) ( ) k

k
k zuzu −

∞

=
∑= λ

0       
(7) 

 
which must converge [17]. Substituting (7) in (6), for the first three values we 
obtain: 

  (8) 

 
To calculate the rest of the series with  we will use the following 

recurrence relation [ 17 ]: 
 

    (9) 

 
after which for the subintegral function (5) we obtain the following sequence: 

 
(10)

Passing to the dimensionless energy parameters  
 

, ,1>α  

( ) ( )expz u z dzψ λ⎡ ⎤= ⎣ ⎦∫

( ) ( ) ( )2 2 2 0
du z

u z g z
dz

λ λ λ+ − − =

( )ku z

( ) 2
1 10

0 1 2
0 0
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2 2

g z u udu zu u u
dz u u
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and performing integration in (5), it is easy to see that the sequence  

 will converge only if the following condition is performed  
 

     (11) 

 
As one can see, the solution of the Schrodinger equation (3) can be written as the 

Exp. (5) for all the values of the particle energy, which are located in higher values 
than  
                                   ,...3,2,1;,...;3,2,1; 00 =>== nEEiFLE ini                           (12) 
 
i.e. for all those cases where the “coordinate drop” of the particles potential energy

( ) ( )0U z L U z FL= − = =  is less than its total energy in the well . Considering the ab-
ove, for the wave function (5) we obtain the following equation in  general form: 

  (13)  

where С is the normalization constant.  
Neglecting the terms of higher order of smallness, and taking into consideration 

the boundary conditions of the equation (3), we will obtain the following equation 
forα : 

    ( ) ( )
2 2 2

3 2 2 2
2

7 5 0; 1,2,3,...
2 24 16 2

nn n nη η η ηα η α α
π

⎛ ⎞ ⎛ ⎞− + + + − + − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

       (14) 

The physical solution of this cubic equation [18] has the following   form: 

( )
( )

( )
( )

2 2 2

22

32 2 2 2 2
2

2

3
2 22

2

,12 71 2 1 cos ;
3 38

7 52
3 3 2 24 16 2

, arccos

72
9 6 12

n

nn n

n

n n n n
n

n
n

ϕ ηη η ηα
η

η η η η η η
π

ϕ η

η η η

⎡ ⎤
+ +⎢ ⎥= + −

⎢ ⎥+⎣ ⎦

⎧ ⎫
⎪ ⎪

⎛ ⎞ ⎛ ⎞+ + ⎛ ⎞⎪ ⎪− + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠= ⎨ ⎬
⎪ ⎪⎡ ⎤+ ⎛ ⎞⎪ ⎪⎢ ⎥− +⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

(15) 

Accordingly, we obtain the following expression for the envelope wave 
functions:  

    ( )
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for the electronic states in the conduction band ( )c , and  
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              (16’)  
          

for the hole states in the valence band ( )v . The normalization constants ,
cnC

vnC  are 
also calculated exactly and explicitly. Note that for the determination of the hole 
states we must simply replace the negative charge with the positive one in equation 
(3), and by mass, effective hole mass is implied. After the change of variable 
L z z′− →  we will again arrive at the equation (4).  

3. DISCUSSION OF RESULTS 

3.1. The spectrum and wave functions 
It is known that the solution of equation (3) in the general case [8-9] is given by 

a linear combination of Airy function at first )( ξ−Аi and second order :)( ξ−Bi  
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In this case the energy spectrum of charge carriers in the film will be determined 

from the relation 

                                        ( )
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ξ ξ

− −
=

− −
 ,                                            (17) 

where 0ξ  и Lξ are the values of the variable ξ  in z = 0 and z = L, respectively. 
However, as noted above, both the energy spectrum of carriers, and their wave 

functions in this case are defined only by numerical methods. The approach offered 
in this work implies the only limitation for the external field in the form of a 
condition (11), performing which we get explicit expressions for the spectrum and 
envelope wave functions of charge carriers for corresponding filed values. It’s easy 
to see, that in the limiting case of weak fields, for 0≠η , but ( )1,1 εη <<<< FL , from 
the expression (15) we obtain for nα : 

                                              
2

2
2 2 2

151
2 48n n

n n
η ηα

π
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                                   (18) 

which corresponds to the well-known result, when the influence of the external 
field is taken into account by perturbation theory [8,19]. From the expressions (13) 
- (16) it’s easy to get, that in case of ( )0,0 →→ Fη  2nn →α , and the wave function 
(16) passes into the wave function of a particle in an infinitely deep square 
potential well in the absence of the field. 

For the range of values of the external field 01FL E<  equation (14) will 
determine all the energy levels of particle: 1 2 3, , ,...E E E , When the field varies in the 
range 01 02E FL E< < , the equation (14) will now determine the levels 2 3 4, , ,...E E E , and 
the level 1E will here appear lower than the meaning 01E , – in the triangular part of 
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well, produced by an external field, etc. The comparison shows, that the results 
obtained in the framework of the proposed analytical approach, with sufficient 
accuracy coincide with the results of the numerical solution of equation (3). 

Table1 gives the values of the first three roots of equations (3) and (14), 
respectively, for intervals of values of the external field ( )01 01 01 1, ;FL E Eη ε< = As 
seen from the table, for the states, where nE FL> , the obtained analytical results are 
with sufficient accuracy close to the data obtained by numerical solution of 
equation (3). As for the states in the triangular part of the well, when nE FL< , then, 
taking into account that size quantization is most pronounced for not highly excited 
states for the analytical description of the first two states in the triangular  well,  the 
variation approach, stated in the work [20]  can be used. 
 
TABLE 1. nα values in the range of field values 

[ ]01 010, , 1,92067η η η∈ = for n=1,2,3  
       

η  
nα  

0,1 0,3 0,5 0,9 1,4 1,8 

1

1n
α

=
 

nm
r 

1,04989
1 

1,14902
5 

1,24729
4 

1,44124
2 

1,67885
5 

1,86513
3 

anl 1,04990
6 

1,14910
2 

1,24780
1 

1,44531
3 

1,68961
1 

1,87610
4 

2

2n
α

=
 

nm
r 

4,05003
2 

4,15029
04 

4,25080
6 

4,45260
2 

4,70625
1 

4,91024
96 

anl 4,05003
3 

4,15029
7 

4,25089
5 

4,45276
9 

4,70685
6 

4,91150
2 

3

3n
α

=
 

nm
r 

9,05001
9 

9,15017
3 

9,25048
1 

9,45155
8 

9,70376
8 

9,90622
6 

anl 9,05001
9 

9,15017
4 

9,25048
4 

9,45157
2 

9,70371
9 

9,90633
1 

Note: nmr - numerical result, anl - analytic result 
 

Fig.1  presents the curves ( ) ( ) 2
1111 ,,

2
,, tLty cccccc αηψαη =    for the different values of the 

external field.  
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FIGURE 1. Distribution of the probability density ( ) ( ) 2

1111 ,,
2

,, tLty cccccc αηψαη = for the 

ground state in the c-band for different values of the external field. 
 
The behavior of the curves shows that with the increase of the field the region of 

the localization of particles is narrowing in the film along the direction of 
quantization, in opposite directions for dissimilar charges - and simultaneously 
increases the amplitude of the corresponding probability density of the spatial 
distribution of carriers. 

 
3.2. Intersubband electro-optical transitions 
As an application of our results we consider the intersubband optical transitions 

in conduction band the film in the presence of an external field, when 01FL E< .  
Assume that the incident light wave 
 
                                       ( ) ( )0, expA r t eA i t qrω= −

r r r rr +c.с.                                    (19) 
 
 with amplitude 0A , frequency ω , wave vector qr  and the single polarization 

vector er  directed along the y-axis and linearly polarized along the z axis: 
( ) ( )0, ,0 , 0,0,1 .q q q e e= =

r r r r  
The corresponding perturbation associated with a weak wave, is represented, as 

usual [21], in the form 
 

                                                          ( )
0

i e
AP

m c
Α =

r rh                                             (20) 

 
where P −

r
 is the three-dimensional momentum operator, 0m −  is the free electron 

mass, е  is its charge, c −  is the speed of light in vacuum. 
For the matrix element ,f iM  of transitions from the subband in  to subband fn  

of the conduction band, in general terms one can write [21-22]: 
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                         ( ) ( )0
,

0 0

, , , ,
f f i i

L

f i n c n n c n

i e A dM z z dz
m c dz

ψ η α ψ η α∗= ∫
h                       (21) 

 
Analysis of the expression (21) shows that the external field removes the 

restrictions on the quantum-sized numbers of subbands ,f in n , which are known to 
occur in the absence of the field [8,22]: , 0| 0f i FM = ≠ , when 1,3,5,...f in n± =      , and 

, 0| 0f i FM = = , when 2, 4,6,...f in n± = When , 00, | 0f i FF M ≠≠ ≠  for arbitrary f in n≠ . As 
one can see from . Figs. 2, 3, the transitions when 1,3,5,...f in n± =  stay   dominant 
as formerly: their intensity is a two order of magnitude greater than the intensity of 
the transitions when 2, 4,6,...f in n± = . With increasing of the field, the intensity of 
transitions is increasing also.  
 

 

FIGURE 2. The dependence ( ) ( )
2

2
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,
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FIGURE 3. The dependence ( ) ( )
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                                               4. CONCLUSION 

Regarding the results obtained in this paper one can conclude the following: 
The proposed approach allows us to define explicitly the energy spectrum and 
envelope wave functions of quantum - confined states of charge carriers for a finite 
interval of values (from zero) of the external field, which is determined by the 
parameters of the quantum well film. 
The explicit dependence of the electro-optical interband transitions on the 
relationship between the effective masses of charge carriers opens up the 
possibility for experimental determination of the value of the effective mass of the 
carriers. 
The obtained analytical results allow for a predictable selection of quantitative 
changes in the intervals of the external field and the geometric parameters of the 
sample, which will allow both to change in a controlled manner the optical energy 
parameters of the system and to regulate the the probability of  recombination of 
opposite charge carriers in the film. 
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Abstract. A Newtonian mechanics model is essentially the model of a point 
body in an inertial reference frame. How to describe extended bodies in non-
inertial (vibration) reference frames with the random initial conditions? One 
of the most generalized ways of descriptions (known as the higher derivatives 
formalism) consists in taking into account the infinitive number of the higher 
temporal derivatives of the coordinates in the Lagrange function. Such 
formalism describing physical objects in the infinitive dimensions space does 
not contradict to the quantum mechanics and infinitive dimensions Hilbert 
space.  
Keywords: Extended Mechanics, high order derivative, vibration reference 
frame. 
PACS: 03.65.Ca, 03.65.Ta 

 
 A Newtonian mechanics model is essentially the model of a point body in an 
inertial reference frame with the defined initial conditions. A point body or an 
inertial reference frame are hard, if not impossible, to actually find. How one can 
describe extended bodies in non-inertial reference frames with the random initial 
conditions? In such a case, Newton’s laws would not hold, and to apply them we 
will have to introduce fictious inertial forces and body center of inertia. In other 
words, to remain in the framework of the Newtonian model for extended bodies in 
non-inertial reference frames, we shall have to complement Newton’s laws with 
fictious concepts of the inertia force and the mass center. The latter ones are 
imaginary physical quantities required only for the sake of remaining in the 
framework of the Newtonian model. 
 Abandonment of the Newtonian model and of introduction of the fictious 
quantities entails a dramatic complicacy in the description of the mechanical 
system dynamics. The Second Newton’s law and all basic equations of the 
classical mechanics are the second power differential equations. These are 
complemented with the fictious quantity equations, e.g., equations for fictious 
forces and the mass center. This yields systems of equations. Such a system of 
equations may be replaced with a single equation, however, of an order exceeding 
two. Is there a description of body dynamics with higher-order equations? Yes, 
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there is, but this is no more Newtonian mechanics. On the other hand, this 
eliminates the requirement to introduce fictious physical quantities the values of 
which are deduced indirectly, by calculations using the experimentally measured 
physical quantities. We shall call the imaginary quantities the fictious ones. 
An example of higher-order kinematic characteristics is the case of harmonic 
oscillations. For this case, there exists an infinite series of higher derivatives. An 
example of the body dynamics description is the case of harmonic oscillations in 
an accelerated reference system. An example of a reference system with a free 
observed body possessing additional kinematic characteristics in the form of higher 
derivatives is a free body in an oscillating reference system, as well as in a 
stochastic reference system, that is, a reference system undergoing stochastic 
oscillations. 
 In quantum mechanics, such an indirect fictious physical quantity is the 
wave function. It cannot be directly measured in an experiment, however, it may 
be employed to calculate values of the quantities observable in an experiment. The 
quantum mechanics axiomatic comprises the postulate on correspondence of an 
observable physical quantity to a wave function. Whether the wave function 
corresponds to a single particle or to multiple particles is still not established. It is 
also not clear yet how comprehensively does the wave function describe the 
microobjects. If the quantum mechanics is incomplete, could the quantum 
mechanical description be complemented with hidden parameters? Speaking 
generally, any theory is incomplete and requires complementation (and this process 
is infinite), and what are hidden parameters and what is their physical 
interpretation is yet unknown. 
 The equation describing the body dynamics in a stochastic reference system 
is as follows: 

...2 ++= akmaF && . 
 For a free particle in the absence of forces this yields a stochastic oscillation 
equation:  

0...2 =++ akma &&  
 The equation for particle oscillations under the influence of an elastic force 
in a stochastic reference system takes on the form: 

0...20 =+++ akmaxk &&  
 Here we consider the case of systems without friction, braking, and 
radiation, therefore, we use only even derivatives. There are cases in physics where 
the oscillation frequencies take on a multitude of discrete values. For example, 
such is the case of a quantum oscillator h/)2/1( En =+ω . 
 Higher derivatives may be non-local hidden parameters if they describe 
acceleration and its deduced kinematic parameters in a non-inertial reference 
system. Then, in any point of the non-inertial system these kinematic parameters 
shall be identical. If we understand inertial reference systems as those where the 
Newton’s laws hold without introduction of fictious inertia forces, then non-inertial 
ones are those possessing an acceleration or its derivatives with respect to inertial 
systems. 
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 Then, stochastic reference systems are non-inertial ones, as they experience 
oscillations with respect to inertial reference systems. At that, any body free of 
forces will experience, in a stochastic reference system, stochastic oscillations with 
kinematic characteristics governed by the reference system. In a non-inertial 
reference systems kinematic characteristics (acceleration and its derivatives) of a 
body free of interactions with other bodies shall be governed by kinematic 
characteristics of the non-inertial reference system with respect to inertial reference 
systems. For example, in a system uniformly accelerated with respect to inertial 
reference systems a body free of interactions with other bodies maintains its 
acceleration, and so on. Therefore, let us introduce the definition: 
 Inertial reference frames are those where the Newton’s laws hold without 
introduction of the fictious inertia forces. 
 Abandoning the Newtonian model of a point body in an inertial reference 
system and considering extended bodies in non-inertial reference frames, let us 
introduce three : 

1. In an arbitrary reference frame a mass center of an extended body free of 
interactions with other bodies preserves its kinematic characteristics 
(velocity, acceleration or their higher derivatives) determined by a 
constant kinematic characteristics of this observer reference frame with 
respect to inertial reference frames. 

2. In an arbitrary reference frame possessing constant kinematic 
characteristics (velocity, acceleration or their higher derivatives) with 
respect to inertial reference frames in the form of n derivative of the 
coordinate in time, the dynamics of the mass center of an extended body 
under the influence of a force is described by a differential equation of 
the order 2n: 

),...,,,,,(... )(
02

)12(
12

)2(
2

nn
n

n
n qqqqqtFqqqq &&&&&&&&&&& =++++ −

− αααα . 
nα  being certain constants. Odd derivatives correspond to friction, radiation 

(losses) or to the case of an open system, that is, for non-bounded and non-isolated 
systems with external forces (this case corresponds to time irreversibility). The no-
loss case is described by the equation 

),...,,,,,(... )(
02

)2(
1

nn
n qqqqqtFqqq &&&&&&&&&& =++++ ααα . 

 If the Galileo’s law is generalized for the case of arbitrary reference systems, 
the invariability of the dynamics laws in this case should mean that in any 
reference system with n-th order invariant the particle dynamics should be 
described by a differential equation of the order 2n. The generalized interpretation 
of Galileo’s laws for uniformly accelerated reference systems means that in any 
reference system uniformly accelerated with respect to inertial reference systems 
the dynamic of the mass center of the extended body is described by a fourth order 
differential equation, and so on for higher order derivatives. 

3. In an arbitrary reference system possessing a constant kinematic 
characteristics (velocity, acceleration or their higher derivatives) with 
respect to inertial reference systems in the form of n-th derivative of the 
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coordinate in time, the forces of interaction of immobile extended bodies 
do  equilibrate. 

 Let us check whether higher derivatives and functions of higher derivatives 
relating to fictious quantities in non-inertial reference systems and equivalent to 
these quantities (according to the equivalency principle) be non-local hidden 
parameters. For this purpose let us consider quantum micro-objects in the curved 
space created in non-inertial reference systems. 
 This approach enables comparison of inertial fictious quantities emerging in 
stochastic non-inertial reference systems (including gravity fields and waves 
equivalent to them according to the equivalence principle) with quantum wave 
properties of micro-objects. This allows posing a problem on relation of this 
approach with the negative result of experimental detection of gravity waves. 
Indeed, in such experiments quantum wave effects are not considered wave inertial 
and wave gravity ones, and what is meant to be detected is actually rejected. 
Verification of this viewpoint requires new experiments in comparison of quantum 
wave and gravity inertial properties of micro-objects. 
 The known descriptions of classical objects (these are classical Newtonian 
mechanics, Hamilton formalism, Lagrange formalism) and quantum ones 
(Schrodinger’s quantum mechanics, matrix quantum mechanics, etc.) may be 
complemented with higher derivative formalism. The latter one is capable, without 
contradicting commonly adopted theories, of complementing the classical 
descriptions with higher temporal coordinate derivatives in the form of quantum 
hidden parameters. Higher derivatives may complement both classical and 
quantum descriptions of physical realm as non-local hidden parameters. The higher 
derivatives may be regarded as stochastic non-local hidden parameters, 
complementing classical and quantum descriptions of the physical realm. This 
allows considering the higher derivative formalism as a stochastic model of the 
classical mechanics with a transition to stochastic quantum mechanics. 
 Attempts to build a unified theory for both quantum and classical mechanics 
are natural and make sense. However, constructing a theory without an axiomatic 
consistent with both theories resembles a construction without foundation. The 
point is that the systems of axioms of classical and quantum theories are mutually 
incompatible and even contradictory. For example, a natural question arises: ”Can 
the phase space be used, and can the momentum and the coordinate exist 
simultaneously in quantum mechanics?” The Heisenberg uncertainty principle tells 
us that it is not possible.  
 As the quantum theory describes objects in Hilbert space, i.e. in terms of an 
infinite number of variables, it gives a more detailed description as compared to 
classical theory. The classical description of physical reality contains an 
incomparably fewer number of variables. This raises the question: ”How the 
classical description can be completed?” While a possibility of supplementing the 
quantum mechanical description with additional hidden variables has been debated 
for long, the question as to how to complete the classical description to make it 
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compatible with the quantum mechanical one has not received due attention. The 
united theory could be based on the recognition of the following postulates:  
1. Any reference frame is subject to random external influences, hence every frame 
is non-inertial and vibrational due to random gravitational fields and waves. Hence, 
every reference frame is different and a transition from one to another one may 
lead to jump like changes. The notion of the inertial frame in classical mechanics is 
valid only on the average and hence the Galilean relativity itself is an average 
notion.  
2. There are many trajectories of a particle corresponding to different reference 
frames; the Heisenberg uncertainty can be understood as a consequence of the 
nonexistence of ideal inertial frames in really where the coordinates and momenta 
can be measure. The Ehrenfest theorem can be seen as a consequence of the 
inertial frame being an average notion. The ideal inertial frames are non-existent, 
we can consider the averaging of the classical equations of motion over a time 
interval tΔ : 

2
)()( ttpttp

dt
d

q
U Δ−+Δ+

=
∂
∂  

Using the Taylor expansion 
...)()1(

!
1...)(

!2
1)()()( )(2 +Δ±++Δ+Δ±=Δ± nnn ttp
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ttpttptpttp &&&&  

the function 
q
UF

∂
∂

−=  can be expanded as follows: 

...)(
!4

1)(
!2

1)(,...),,,( 4)5(2 +Δ+Δ+= ttpttptpqqqqF &&&&&&&&&&&  

where )(np&  denotes n-th time derivative of momentum p . 
 Correspondingly, the free body preserves the same order of its time 
derivative like the constant kinematic characteristics of the reference frames. For 
example, in the uniformly accelerating reference frame the free body preserves its 
acceleration. 
3. The de-Broigle waves  )/exp(0 hiS−=ψψ  with the actions functions 

,...),...,,,,( )(nqqqqqSS &&&&&&&=  can be considered as having the gravity-intertial nature 
following from the fact that every reference frame is vibrational due to the 
influence of random gravitational fields and waves so that every free particle 
appears to be oscillating. 
4. As the action function ,...),...,,,,( )(nqqqqqSS &&&&&&&=  is a convergent series in high 
derivatives of q the difference hqqSqqqqqS n =− ),(,...),...,,,,( )( &&&&&&&&  is finite and can be 
identified with the constant h. Within the presented framework the variables of the 
(high order extension of the) phase space do describe the completed dynamics of a 
particle, but they cannot be measured because the ideal inertial reference frames do 
not exist in really. The infinite dimensionality of Hilbert space can also be 
understood as a consequence of all high order time derivatives being taken into 
account in the description of the dynamics. 
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Abstract 

 
Within the Machian model of the universe the dark energy is identified 
with the energy of collective gravitational interactions of all particles 
inside the Hubble horizon. It is shown that the fine structure constant 
can be expressed in terms of the observed radiation, baryon and dark 
energy densities of the universe and the densities of various 
components of matter are interrelated via it. 
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There exist three types of field theoretical descriptions successfully working in 
their own areas: quantum mechanics, quantum field theory, and general relativity. 
However, problems arise, when one tries to establish bridges between these 
descriptions. There are well known difficulties in the foundations of relativistic 
quantum mechanics, the definition of quantum fields in curved space-times, and 
quantization of gravity.  
 
A new framework to establish a unifying approach to main field theoretical 
descriptions is provided by the approach appealing to the notions of 
thermodynamics. For instance, the thermodynamic arguments and analogies have 
proven to be useful in black hole physics [1], discovery of Unruh temperature [2], 
establishment of the AdS/CFT correspondence [3], derivation of the Einstein [4] 
and Maxwell [5] equations, in the recent attempt to interpret the Newtonian gravity 
as an entropic force [6], and other discussions of the "emergent gravity" [7,8]. 
Besides, the analogies with the classical statistical mechanics and thermodynamics 
have been underlying some recent discussions of the foundations of quantum 
mechanics [9,10]. 
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However, these thermodynamic arguments are mere analogies so far, since the idea 
that classical field theory is a consequence of the laws of thermodynamics and 
statistical physics raises many questions, such as the origin of the microscopic 
degrees of freedom responsible for the thermodynamics-like quantities appearing 
in the formalism and the origin of the relativistic invariance. The latter is due to the 
fact that the approaches based on statistical thermodynamics imply the existence of 
the energy reservoir of the canonical ensemble which singles out a preferred 
reference frame where the average momentum of the ensemble is zero, so that the 
underlying theory is not even Galilean invariant. 
 
A Machian thermodynamic model of the universe has been put forward in [11-14] 
as a possible answer to the problems outlined above. In this model the universe is 
viewed as the statistical ensemble of all quantum particles inside the horizon. The 
'thermodynamic' formulation of the Mach's principle is introduced (for other 
formulations see [15]) according to which the rest mass of a particle is a measure 
of its long-range collective interactions with the whole statistical ensemble of 
particles inside the cosmological horizon. The ensemble distinguishes a 
fundamental cosmological reference frame. In spite of the explicitly anti-
relativistic assertion above, it was demonstrated how the model can be compatible 
with the existing cosmological and gravitational theories in the low energy regime 
[12,13], where the relativistic invariance emerges, and with the main features of 
quantum mechanics [14]. Note that the assumption that all particles in the isotropic 
and homogeneous universe are involved in mutual long-range gravitational 
interactions avoids the problem with the anisotropic effective masses which arose 
in earlier naive treatments of the Mach's principle and have been ruled out by the 
precision measurements [16]. Besides, this assumption effectively weakens the 
observed strength of gravity, thus explaining the hierarchy problem in particle 
physics [11]. 
 
In this paper we show that estimations based on the Machian thermodynamic 
model of the universe lead to the expression of the fine structure constant in terms 
of the observable cosmological parameters. 
 
In the model [11-14] each particle in the universe interacts with the collective 
gravitational potential of all N particles in the universe. The universe is considered 
as a statistical ensemble of 'gravitationally entangled' particles, where the 
collective non-local (at the Hubble scale) interaction gives rise to what we usually 
perceive as classical space-time. The universal constant of the speed of light, c, 
originates in the non-local potential of the whole universe, Φ, acting on each 
particle of the world ensemble:    
 

c2= - Φ = 2MG/R ,      (1) 
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where M and R ≈ 3×1026 m are the total mass and the radius of the universe, 
respectively, and G ≈ 7×10-11 m3s-2kg-1 is the Newton constant. This 'universal' 
potential Φ, and thus c, can be regarded as constants since, according to the 
cosmological principle, the universe is isotropic and homogeneous at the Hubble 
scale R. 
 
Let us emphasize that (1) is just another formulation of the critical density 
condition in relativistic cosmology: 
 

    ρc = 3M/4πR3 = 3H2/8πG ,     (2) 
 

where 
 

                    H = c/R ≈ 2×10-18 s-1         (3) 
 

is the Hubble constant. The later relation, which relates the Hubble radius of the 
universe R to the distance the light has traveled since the big bang, is regarded only 
as a coincidence in LCDM model where this observed relation is valid only once in 
the history of the universe, namely in the present epoch. However, if we impose 
the condition (1) the Friedmann equations lead to the unique solution 
corresponding to (3). 
 
The relation (1) also allows us to formulate the Mach's principle which relates the 
origin of inertia of a particle, or its rest energy, to the particle's interactions with 
the whole universe, namely 

E = mc2 = - mΦ ,     (4) 
 

where m is the mass parameter describing the particle's inertia. This equation is 
equivalent to 

 mc2 + mΦ = 0 ,     (5) 
 

and represents the simplest energy balance equation written here for a particle at 
rest with respect to the preferred reference frame of the universe. The energy 
balance conditions, which exhibit the exact conservation of energy [12,13], assume 
that the non-local gravitational interaction with the universe is the source of all 
kinds of local energy of a particle. This means that the total (nonlocal plus local) 
energy of any object in the universe vanishes, i.e. the gravitational energy is 
assumed to be negative, while all other forms of energy are positive [17]. In the 
homogeneous and isotropic universe this statement can be generalized to any 
expanding region with the radius r and the energy density ρ. Indeed, it can be 
shown that the Friedmann equation for the region is equivalent to the classical 
energy conservation condition and the curvature constant k entering this equation 
can be related to the total Newtonian (kinetic plus potential) energy Etot [18]:  
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k = - 5Etot/2πr5a3ρ ,           (6) 
 

where a is the cosmological scale factor. The current cosmological measurements 
(see, e.g. [19]) are indicating that most likely k = 0. Hence, the total energy of any 
region, and thus of the whole universe, vanishes. Since in this case the universe can 
emerge without violation of the energy conservation, this point of view appears to 
be preferable in cosmology [17,20]. 
 
The potential Φ takes into account the contribution of the collective gravitational 
interactions between all N particles inside the horizon. Namely, since each particle 
interacts with all other (N-1) particles, and the mean separation in the interacting 
pairs is R/2, the total energy consists of N(N-1)/2 terms of magnitude ≈ 2Gm2/R. 
Then, for very large N, the energy of a single particle which interacts with the total 
gravitational potential of the universe Φ is given by:  
 

E ≈ N2Gm2/R .          (7) 
 

Correspondingly, the contribution of the collective gravitational interactions to the 
total mass of the universe is:  
 

MG ≈ N2m/2 ,       (8) 
 

so that MG ~ M, where M denotes the total mass of the universe, is of the order of 
N2 and not ≈ Nm. The numerical value of the total mass of the universe can be 
estimated from (2) or (1) by using the observed values of c, G and H: 
 

M ~ c3/2GH ≈ 1053 kg .     (9) 
 
Because of the finite number of particles inside the horizon and the existence of the 
maximal speed c, any movement of the particles of the 'gravitationally entangled' 
world ensemble results in a delayed response of the whole ensemble. The response 
time of the universe to the motion of a quantum particle is estimated as follows: 

 
Δt ~ R/Nc ~ 1/NH .     (10) 

 
Note that Δt is much shorter than e.g. the mean free motion time of particles with 
the mean separation ~ R/N1/3 in a dilute gas, because, as a result of the non-local 
interactions of all particles, the effective mean separation between particles in the 
world ensemble is much shorter: ~ R/N. 
 
As a consequence of the delayed nonlocal response of the universe, any 
mechanical process in the world ensemble will be accompanied by the exchange of 
at least the minimal amount of action A = mc2Δt, which we identify with the 
Planck's action quantum [12,13]:  
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A = -∫dt E ≈ - mc2Δt = 2πħ .     (11) 

 
Using (9), (10) and (11) we can estimate the total action of the universe: 
 

AU = Mc2/H ≈ N3A/2 ,     (12)  
 

and the number of typical particles in it:  
 

N ≈ (2AU/A)1/3 ≈ (Mc2/πħH)1/3 ≈ 1040 .    (13) 
 
This number, one of the main parameters of our model, is known to have appeared 
in a different context in the Dirac's 'large numbers' hypothesis which is usually 
considered as an indication of a deep connection between the micro and macro 
physics [21]. 
 
Using (8), (9), (13), and the assumption  MG ~ M, we can also estimate the mass of 
a typical particle in our simplified model universe:  
 

m ≈ 2M/N2 ≈ 2×10-27 kg ≈ 1 GeV c-2 ,     (14)  
 

which appears to be of the order of magnitude of the proton mass. This estimation 
is also consistent with (10), as  
 

Δt ≈ 1/NH ≈ 10-22 s ~ ħ GeV-1 ,     (15)  
 

Hence, a typical stable heavy particle, the proton, can be considered as a typical 
particle forming the gravitating world ensemble in our simplified one-component 
universe. Or, vice versa, we could postulate that the typical mass of a particle 
forming the world ensemble equals to the proton mass (i.e. a typical stable baryon), 
and then use (10) in order to obtain the mean action per particle (11), which then 
exactly coincides with the Planck constant. 
 
Let us stress here a difference between our model and the standard approach, 
where the mass of the universe (9) is estimated as the sum of masses of ~ 1080 
protons. In the thermodynamic model the energy of long-range interactions of all 
particles is taken into account, which is missing in the standard approach. As a 
consequence, according to eq. (8), only ~ 1040 protons, eq. (13), is sufficient in 
order to account for the correct value of the total mass of the universe, eq. (9). For 
this reason, it is natural to identify the collective gravitational energy of all 
particles with the dark energy of the universe which, within the standard LCDM 
model, is identified with the cosmological constant Λ. Thus, we assume:  
 

ΩΛ = MG/M ≈ N2m/2M .     (16) 
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Note that under the above identification the energy balance condition (5) written 
for all N particles in the universe is equivalent to the equation of state of the dark 
energy in the standard cosmology:  
 

ρ + p = 0 ,     (17) 
 

where ρ is the energy density. In our case the exotic negative pressure p has a 
natural explanation: it is a consequence of the negative gravitational potential of 
the whole universe. The assumption (16) can also help to resolve the problem of 
why the density of dark energy is of the order of the critical density (2). The 
standard cosmology offers no reasonable explanation of this relationship since the 
dark energy is associated with the energy of quantum vacuum fluctuations which is 
expected to be 120 orders of magnitude higher than ρc. 
 
Now, let us consider a little bit more realistic model universe which includes both 
neutral and charged particles. We assume that the universe as a whole is neutral, 
i.e. a half of charged particles carries positive charge +e and the other half have 
negative charge -e. The number of charged particles can be roughly identified with 
the number of baryons in the universe Nb < N. A simple combinatorics yields for 
the gravitational energy of single baryon which interacts with all other particles in 
the universe the following formula:  
 

Eb = (2NbN - Nb
2)Gm2/R ≈ 2NbNGm2/R .    (18)  

 
Then according to (8) the total gravitational energy of the baryon component of 
matter yields:  
 

Eb|G = N2Eb/2 ≈ NbN3Gm2/R .         (19) 
 

We can also expect that the ratio (16) of the gravitational and total energy is valid 
for the corresponding baryon contributions:  
 

Eb|G/Eb|tot = ΩΛ ,     (20) 
 

where Eb|tot denotes the total energy of the baryon component of the universe. Then 
the observed baryon density in the universe can be written in the form:  
 

Ωb ≈ (Eb|tot - Eb|G)/Mc2 ≈ Eb|G(1 - ΩΛ)/ΩΛMc2 .  (21) 
 
Further, let us estimate the electromagnetic energy of all Nb charged particles (i.e. 
Nb/2 interacting pairs) in the model universe. The fact that electric charges have 
two polarities, while the mass is always positive, leads to basic differences, 
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namely, universe as a whole is neutral and, in contrast to the gravitational energy, 
the total electromagnetic, or radiative energy consists of Nb/2 additive terms, i.e. 
 

Er ≈ Nbkce2/2R = Nbαħc/2R ,    (22)  
 

where kc is the Coulomb constant and α is the fine structure constant. Similar to 
(19) the total gravitational energy of the radiation component of matter can be 
estimated as: 

Er|G ≈ NbN2αħc/4R .    (23) 
 
Equations (19), (20), (21) and (23) yield for the ratio of the radiative and baryon 
densities in the universe: 
 

Ωr/Ωb ≈ Er|GΩΛ/Eb|G(1 - ΩΛ) ≈ αħcΩΛ/4NGm2(1 - ΩΛ) ,  (24)  
 

whence it follows: 
 

α = 4NGm2Ωr(1 - ΩΛ)/ΩΛΩbħc .    (25) 
 

From (1), (7) and (8) we find:  
 

m2/ħ = 2πcΩΛ/NG .    (26)  
 

Finally, by inserting this formula into (25), we arrive at the expression for the fine 
structure constant in terms of the cosmological parameters ΩΛ, Ωb and Ωr: 
 

α ≈ 8πΩr(1 - ΩΛ)/Ωb .    (27) 
 

From the contemporary observations we know that Ωr/Ωb = 1.09±0.03×10-3 and 
ΩΛ = 0.74±0.03 [22]. Using those values in (27), we obtain:  
 

α ≈ 7.1±0.6×10-3 ,      (28)  
 

which is surprisingly close to the experimental value α ≈ 7.297×10-3. 
 
From (27) we can also obtain a relationship between the dark energy and the 
baryon energy densities using the observed values of the fine structure constant α 
and the radiation energy density Ωr = 4.8±0.04×10-5 [22]:   
  

 ΩΛ ≈ 1 - 6Ωb ,      (29) 
 

which appears to be consistent with current observations. Note that in the standard 
cosmological models the relation between the baryonic matter and dark energy 
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densities is an arbitrary parameter determined from observations. Using the 
relationship between the densities of various matter species Ωi and ΩΛ in the flat 
universe: 

ΩΛ + ∑i Ωi = 1 ,    (30) 
 
we can exclude ΩΛ from (27) and interpret the result as a relation between the fine 
structure constant and the densities of various components of matter in the 
universe. 
 
To conclude, we have considered the energy content of the Machian  
thermodynamic model of universe taking into account the existence of charged 
particles and their contribution to the total gravitational energy. The energy of 
collective gravitational interactions of all particles in the universe was identified 
with the dark energy. It has allowed us to express the fine structure constant in 
terms of the radiation, baryon and dark energy densities. The expression  agrees 
with the experimental value of the fine structure constant up to the uncertainty in 
the observed values of the cosmological parameters. Being depending on the 
energy densities of different components of matter in the universe, the expression 
might be helpful for understanding the recent evidence of the cosmological 
variations of the fine structure constant at high redshifts [23]. The expression also 
yields a proportion between the densities of the baryon and dark energy 
components in the universe and a relation between the densities of various species 
of matter in the universe in terms on the observed (current) value of the fine 
structure constant. 
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Abstract. Within the expanding cosmic Hubble volume, Hubble length can be 
considered as the gravitational or electromagnetic interaction range. Product of  
‘Hubble volume’ and ‘cosmic critical density’ can be called as the ‘Hubble 
mass’. Based on this cosmic mass unit, authors noticed five peculiar semi 
empirical relations in atomic, nuclear and cosmic physics. With these 
applications it is possible to say that – during the cosmic evolution, magnitude of 
Planck’s constant increases with increasing cosmic time. This may be the root 
cause of observed cosmic red shifts. By observing the cosmological rate of 
change in Planck’s constant, the future cosmic acceleration can be verified from 
the ground based laboratory experiments. With reference to the current concepts 
of distant and spatial variation of the fine structure ratio, variation of the 
Planck’s constant can be considered for further analysis. 
 
Keywords: Hubble volume; Cosmic critical density; Hubble mass; Cosmic 
thermal energy density; Planck’s constant;  
PACS: 95.30.Sf; 98.80.-k; 98.80.Es; 98.80.Qc; 95.85.Bh; 03.65.Ta; 
  

1.  INTRODUCTION 
 
Einstein, more than any other physicist, untroubled by either quantum 

uncertainty or classical complexity, believed in the possibility of a complete, 
perhaps final, theory of everything. He also believed that the fundamental laws and 
principles that would embody such a theory would be simple, powerful and 
beautiful. Physicists are an ambitious lot, but Einstein was the most ambitious of 
all. His demands of a fundamental theory were extremely strong. If a theory 
contained any arbitrary features or undetermined parameters then it was deficient, 
and the deficiency pointed the way to a deeper and more profound and more 
predictive theory. There should be no free parameters – no arbitrariness. According 
to his philosophy, electromagnetism must be unified with general relativity, so that 
one could not simply imagine that it did not exist. Furthermore, the existence of 
matter, the mass and the charge of the electron and the proton (the only elementary 
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particles recognized back in the 1920s), were arbitrary features. One of the main 
goals of a unified theory should be to explain the existence and calculate the 
properties of matter.  

In physics history, for any new idea or observation or new model - at the 
very beginning – their existence was very doubtful. The best examples were : 1) 
Existence of atom  2) Existence of quantum of energy  3) Existence of integral 
nature of angular momentum 4) Existence of wave mechanics 5) Existence of 
Black holes 6) Black hole radiation and  so on. Another best example is/was: 
Einstein’s cosmological λ  term. In this paper authors made an attempt to 
understand the basic concepts of particle cosmology via five semi empirical 
applications. 

If we write ( )0 0/R c H≅  as a characteristic cosmic Hubble radius [1] then 
the characteristic cosmic Hubble volume is ( ) 3

0 04 / .3V Rπ≅  The Hubble volume is 
sometimes defined as a volume of the universe with a commoving size of ( )0/c H . 
The exact definition varies. Some cosmologists even use the term Hubble volume 
to refer to the volume of the observable universe. With reference to the cosmic 
critical density ( )2

03 / 8c H Gρ π≅  and the characteristic cosmic Hubble volume, 
characteristic cosmic Hubble mass can be expressed as 

 
3

0 0 0( / 2 )cVM c GHρ≅ ≅                                               (1) 
 

If we do not yet know whether the universe is spatially closed or open, then the 
idea of Hubble volume or Hubble mass can be used as a tool in cosmology and 
unification. This idea is very close to the Mach’s idea of distance cosmic back 
ground. It seems to be a quantitative description to the Mach’s principle. In 
understanding the basic concepts of unification of the four cosmological 
interactions, the cosmic radius ( )0/c H  can be considered as the infinite range of the 
gravitational or electromagnetic interaction.  

Within the Hubble volume it is noticed that: 1) Each and every point in free 
space is influenced by the Hubble mass. 2) Hubble mass plays a vital role in 
understanding the properties of electromagnetic and nuclear interactions and 3) 
Hubble mass plays a key role in understanding the geometry of the universe. The 
current value of the Hubble’s constant is 1.3

0 1.470.4H +
−≅ Km/sec/Mpc [2,3]. Thus the 

magnitude of the present cosmic Hubble mass can be given as 52
0 8.84811 10M ≅ ×

Kg.  
 

2.  FIVE PECULIAR APPLICATIONS 
 

Application-1 
 

In physics, the fine-structure ratio (usually denoted byα ) is a fundamental 
physical constant, namely the coupling constant characterizing the strength of 

http://en.wikipedia.org/wiki/Observable_universe�
http://en.wikipedia.org/wiki/Physics�
http://en.wikipedia.org/wiki/Fundamental_physical_constant�
http://en.wikipedia.org/wiki/Fundamental_physical_constant�
http://en.wikipedia.org/wiki/Coupling_constant�
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the electromagnetic interaction. Being a dimensionless quantity, it has constant 
numerical value in all systems of units. The most precise value of α  obtained 
experimentally (as of 2012) is based on a measurement of  ‘Linde g  factor’  using 
a ‘one-electron’ so-called ‘quantum cyclotron’ apparatus, together with a 
calculation via the theory of QED. This measurement of α  has a precision of 
0.25 parts per billion.  

If 2
ccρ  is the present cosmic critical energy density and 4

0aT  is the present 
cosmic thermal energy density, it is noticed that,   

4 2
0 0 0

2 2

4 1ln .
c

aT GM
c e

πε
αρ

⎛ ⎞≅ ⎜ ⎟
⎝ ⎠                                                

(2)
 

This is a very peculiar relation and constitutes the 2
ccρ  and 4

0aT . Note that, from 
unification point of view, till today role of dark energy or dark matter is unclear  
and undecided. Their laboratory or physical existence is also not yet confirmed. In 
this critical situation this application can be considered as a key tool in particle 
cosmology. Note that large dimensionless constants and compound physical 
constants reflect an intrinsic property of nature. At present  if ( )2

03 / 8 ,c H Gρ π≅  
independent of the gravitational constant, Eq.1 takes the following form. 

4 4
0 0
2 4

0

42 1ln
3

aT c
e H

πεπ
α

⋅ ≅                                                 (3) 

At present if observed CMBR temperature [4] is 0
0 2.725 K,T ≅  obtained 0H ≅ 71.415 

Km/sec/Mpc. After simplification, it can be interpreted as follows. Total thermal 
energy in the present Hubble volume can be expressed as, 

 ( )
3

4
00

0

4
3T

cE aT
H

π ⎛ ⎞
≅ ⋅ ⎜ ⎟

⎝ ⎠
                                            (4) 

If 
0

c
H

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the present electromagnetic interaction range, then the present 

electromagnetic potential can be expressed as 

( ) ( )
2

0
0 04e
eE
c Hπε

≅                                             (5) 

Now inverse of the present fine structure ratio can be expressed as 
( )
( )

0

0 0

1 ln
2

T

e

E
Eα

⎛ ⎞ ≅⎜ ⎟
⎝ ⎠                                             (6) 

In this way, in a unified manner, the present fine structure ratio can be fitted. From 
this relation it is possible to say that, cosmological rate of change in fine structure 
ratio, ( )d dtα may be considered as an index of the future cosmic acceleration. Many 
physicists think its possible variation and experiments are in progress. Dirac 
proposed about the variation of the gravitational constant [6,7]. Compared to the 
concept of ‘variation of gravitational constant’ – ‘variation of fine structure ratio’ 
seems to be testable in ground based spectroscopic observations easily. While the 
fine-structure constant is known to approach 1/128 at interaction energies above 80 

http://en.wikipedia.org/wiki/Electromagnetic_interaction�
http://en.wikipedia.org/wiki/Dimensionless_quantity�
http://en.wikipedia.org/wiki/System_of_units�
http://en.wikipedia.org/wiki/Parts_per_billion�


74 
 

GeV, physicists have pondered for many years whether the fine-structure constant 
is in fact a constant, i.e., whether or not its value differs by location and over time. 
Specifically, a varying α  has been proposed as a way of solving problems 
in cosmology and astrophysics.  

More recently, theoretical interest in varying constants (not just α ) has been 
motivated by string theory and other such proposals for going beyond the Standard 
Model of particle physics. The first experimental tests of this question examined 
the spectral lines of distant astronomical objects and the products of radioactive 
decay in the Oklo natural nuclear fission reactor. The findings were consistent with 
no change. In October 2011 Webb et al. reported a variation in α  dependent on 
both redshift and spatial direction [8]. Till today from ground based laboratory 
experiments no variation was noticed in the magnitude of the fine structure ratio. 
Future experiments and observations may reveal the real picture.  
 

Application-2 
 
If pM  is the Planck mass it is noticed that,  

2
0
2

1ln .e

p s

m R
M R α

⎛ ⎞
≅⎜ ⎟⎜ ⎟

⎝ ⎠                                               
(7) 

where ( )0 0/R c H≅ and sR  is close to 1.5 fm and can be considered as the 
characteristic nuclear radius or the strong interaction range [5]. Interpretation of 
this relation seems to be connected with two lengths and two mass units. In this 
semi empirical relation the most puzzling thing is that, out of the 4 physical LHS 
parameters, 3 are believed to be fundamental physical constants and they are 
electron rest mass, Planck mass and the strong interaction range. The only variable 
is Hubble length. In RHS, the output physical constant is the fine structure ratio. 
Here interpretation seems to be a sensitive and critical task.  
 

Application-3 
 
If e and  mpm are the rest masses of proton and electron respectively, it is noticed that 

  
0

2 1.38 fm  
p eG M m m

c
≅

                                                           
(8)

     
This obtained length is close to the strong interaction range [5]. Whether it is the 
strong interaction range or something else, is not clear. Here in RHS, the 
coefficient 2 is missing. From unification point of view this relation can be given a 
chance either in quantum chromodynamics  or in string theory. From the above 
two applications, it is possible to say that, the Hubble length plays a key role in 
atomic and nuclear physics.   
 
 
 

http://en.wikipedia.org/wiki/Cosmology�
http://en.wikipedia.org/wiki/Astrophysics�
http://en.wikipedia.org/wiki/String_theory�
http://en.wikipedia.org/wiki/Standard_Model�
http://en.wikipedia.org/wiki/Standard_Model�
http://en.wikipedia.org/wiki/Spectral_line�
http://en.wikipedia.org/wiki/Radioactive_decay�
http://en.wikipedia.org/wiki/Radioactive_decay�
http://en.wikipedia.org/wiki/Oklo�
http://en.wikipedia.org/wiki/Natural_nuclear_fission_reactor�


75 
 

Application-4 
 
Another peculiar relation can be expressed in the following way.   

0
0.9975 1

p e

c
Gm M m

≅ ≅
h

                                              (9) 

If this is merely a coincidence, it is very good and the matter ends here. This 
relation seems to be a mysterious and confusing one. This relation can be analyzed  
in different angles. Its applications seem to be very mysterious. With the above  
relation, obtained value of the present Hubble’s constant is 0 70.75H ≅  Km/sec/Mpc. 
Now the ‘Bohr radius of hydrogen’ atom can be expressed as  

2
0 0 0

0 2 2 2
0

4 41 ·
2

p p pGm M Gm Gm ca
He c e

πε πε⎛ ⎞⎛ ⎞
⎜ ⎟≅ ≅⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠                         

(10) 

This relation is free from the famous constant h(cross). If nuclear mass increases as 
( ). pn m  where n =1,2,3,.. it is very simple to understand the integral nature of angular 
momentum. Above relation takes the following form.  

( ) ( ) ( )2
0 0 02

0 2 2 2
0

4 4 .1 ·
2

p p pG n m M G n m G n m cn a
He c e

πε πε⎛ ⎞⎛ ⎞⋅ ⋅ ⎜ ⎟⎜ ⎟≅ ≅ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠                    
(11) 

From all these relations it can be interpreted that, in the presently believed atomic 
and nuclear “physical constants”, there exists one cosmological variable! By 
observing its cosmological rate of change, the “future” cosmic acceleration can be 
verified. Thus independent of the cosmic redshift and CMBR observations, with 
these coincidences it is possible to understand and decide the cosmic geometry. 
Now  in a very simple way, h(cross) and Planck’s constant can be expressed as 

( )0 p e

e

G n m mM
n

m c

⋅
⋅ ≅ ⋅h                                           (12) 

( )02 p e

e

G n m mM
n h

m c
π

⋅
⋅ ≅ ⋅                                           (13) 

In this way, in a very simplified manner, the integral nature of angular momentum 
can be understood. This interpretation seems to be quite interesting but at the same 
time it is very difficult to accept this observation. Considering any two consecutive 
integers ( ) and 1n n + , their geometric mean state can be expressed as ( )1n n + and it 
seems to be the base for the vector atom model. The fine structure ratio can be 
expressed as 

2

0 0
·
4

e

p e

m e
M Gm m

α
πε

≅                                           (14) 

Please note that, Einstein never believed in Quantum mechanics [9]. Because of his 
opposition to quantum mechanics he allowed himself to ignore most of the 
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important developments in fundamental physics for over twenty five years, as he 
himself admitted in 1954, ‘I must seem like an ostrich who buries its head in the 
relativistic sand in order not to face the evil quanta’. David Gross says [9] : To be 
sure many of the inventors of quantum field theory were soon to abandon it when 
faced with ultraviolet divergences, but it is hard to understand how Einstein, could 
not have been impressed with the successes of the marriage of his children 
quantum mechanics and special relativity. The Dirac equation and quantum 
electrodynamics had remarkable successes, especially the prediction of anti-
particles. How could Einstein not have been impressed?  

After sometime in the late 1920s Einstein became more and more isolated 
from the mainstream of fundamental physics. To a large extent this was due to his 
attitude towards quantum mechanics, the field to which he had made so many 
revolutionary contributions. Einstein, who understood better than most the 
implications of the emerging interpretations of quantum mechanics, could never 
accept it as a final theory of physics. He had no doubt that it worked, that it was a 
successful interim theory of physics, but he was convinced that it would be 
eventually replaced by a deeper, deterministic theory. His main hope in this regard 
seems to have been the hope that by demanding singularity free solutions of the 
nonlinear equations of general relativity one would get an over determined system 
of equations that would lead to quantization conditions. 

 
Application-5 

 
With reference to the Planck mass   

P
cM

G
≅

h

                                                                     (15) 

and the elementary charge ,e  a new mass unit  
2

04C
eM

Gπε
≅

                                                                 (16) 

can be constructed. With CM  and 0M  it can be assumed that, cosmic thermal energy 
density, matter energy density and the critical energy density are in geometric 
series and the geometric ratio is ( )01 ln / .CM M+ Thus, 
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c M
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ρ
ρ
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                                                    (17) 

where mρ is the cosmic matter density. 
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At present, these relations take the following trial-error form: 
1 43
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From this relation, if 0T  is known, by trial–error, present value of 0H  can be 
estimated. Note that, obtained matter density mρ  can be compared with the 
elliptical and spiral galaxy matter density. Based on the average mass-to-light ratio 
for any galaxy [10]  
 

( ) 32 3
00 1.5 10 gram/cmm hρ η−≅ ×                                 (20) 

 
where for any galaxy, 〈M/L〉Galaxy = η〈M/L〉Sun and the number:  

0
0

70.75 0.7075.
100 Km/sec/Mpc 100

H
h ≅ ≅ ≅ Note that elliptical galaxies probably comprise about 

60% of the galaxies in the universe and spiral galaxies are thought to make up 
about 20% of the galaxies in the universe. Almost 80% of the galaxies are in the 
form of elliptical and spiral galaxies. For spiral galaxies, ηh0

-1 ≅ 9 ± 1 and for 
elliptical galaxies, ηh0

-1 ≅ 10 ± 2. For our galaxy inner part, ηh0
-1 ≅ 6 ± 2. Thus the 

average ηh0
-1 is very close to 8 to 9 and its corresponding matter density is close to 

(6.0 to 6.67) × 10-32 gram/cm3.  
 

3. DISCUSSION AND CONCLUSIONS  
 

Hubble initially interpreted red shifts as a Doppler effect, due to the motion of 
the galaxies as they receded for our location in the Universe. He called it a 
‘Doppler effect’ as though the galaxies were moving ‘through space’; that is how 
some astronomers initially perceived it [1]. This is different to what has now 
become accepted but observations alone could not distinguish between the two 
concepts. Later in his life Hubble deviated from his earlier interpretation [11] and 
said that the Hubble law was due to a hitherto undiscovered mechanism, but not 
due to expansion of space - now called ‘cosmological expansion’. This is a very 
important point to be noted here. With reference to the noticed semi empirical 
relations - the observed cosmic red shifts can be interpreted in the following way:.  

 
1) During the cosmic evolution, the magnitude of Planck’s constant increases and 

the quantum of energy gradually increases. At present, at all galaxies (either 
aged or younger), value of Planck’s constant is same. Based on the current 
concepts of spatial variation of the fine structure ratio, this proposal may be 
given a chance and may not be ignored.  

2) ( )d h
dt

 is a measure of cosmic rate of expansion. It may be noted that, as the 

universe is accelerating, value of Planck’s constant increases. Thus if there is no 
change in the magnitude of Planck’s constant, it can be suggested that, at 
present there is no cosmic acceleration.    

3) During journey light quanta will not lose its energy.  
4) Past light quanta emitted from aged galaxy will have less Planck’s constant and 

show a red shift with reference to the receiving younger galaxy.  
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Every day quantum mechanics is strongly connected with the constancy of 

Planck’s constant. String theory, quantum cosmology, quantum chromodynamics 
(QCD) etc. are strongly based on the constancy of  Planck’s constant. With 
reference to the present concepts of cosmic acceleration and with laboratory 
experiments one may not decide whether universe is accelerating or decelerating. 
Many experiments are under progress to detect and confirm the existence of dark 
matter and dark energy. Along with these experiments if one is willing to think in 
this new direction, from atomic and nuclear inputs it may be possible to verify the 
future cosmic acceleration.  

 
With the proposed concepts and with the advancing science and technology, 

from the ground based laboratory experiments, from time to time the concept  ( )d h
dt

 

can be put for experimental tests. There is no need to design a new experiment. 
Well established experiments are already available by which Planck’s constant can 
be estimated. Moreover, conducting an experiment in this direction is also very 
simple. Only thing is that the same experiment has to be repeated for several times 
or continuously. This is also very simple. Thus in the near future one can expect 
the real picture.  

Alternatively in a theoretical way, the proposed five applications or semi 
empirical relations can be given a chance and the subject of elementary particle 
physics and cosmology can be studied in a unified manner [12]. It is true that the 
proposed relations are speculative and peculiar also. By using the proposed 
relations and applying them in fundamental physics, in due course their role or 
existence can be verified. With these relations, Hubble constant can be estimated 
from atomic and nuclear physical constants.  If one is able to derive them with a 
suitable mathematical model, independent of the cosmic redshift and CMBR 
observations, the future cosmic acceleration can be verified from atomic and 
nuclear physical constants. Now the new set of proposed relations are open to the 
science community. Whether to consider them or discard them depends on the 
physical interpretations, logics, experiments and observations. In most of the 
critical cases, ‘time’ only will decide the issue. The mystery can be resolved only 
with further research, analysis, discussions and encouragement.   

 
4.  NEW DERIVATION FOR COSMIC RED SHIFT 

 
Let us revise the basic definition of ( )z  as follows: 

                0

0 0
but not  G

G
z

λ λ λ λ
λ λ λ
− Δ Δ

≅ ≅                                              (21) 

Here 0λ is the wave length of light  at our galaxy and Gλ  is the wave length of 
light at old galaxy. Note that when λΔ  is very small or 0 Gλ λ≅  
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0 G

λ λ
λ λ
Δ Δ

≅                                                         (22) 

Please note that, by Hubble’s time the observed maximum red shift was 0.003. 
With that red shift it is not possible to decide the correct definition of z . 
  
Based on the increasing value of the Planck’s constant,  red shift ( )z  will be 
directly proportional to the age difference of our galaxy and the old galaxy ( )tΔ . 

                            z t∝ Δ                                                           (23)  
0z H t≅ Δ                                                         (24) 

Here 0H is the proportionality constant. In this way 0H  can be incorporated directly.  
When  0     0  z 0t λΔ → ⇒ Δ → ⇒ →   Multiplying Eq. 24 both sides with c    
 

0zc c tH≅ Δ                                                    (25) 
On rearranging,   

0

cc t z
H

Δ ≅ ⋅                                                  (26) 

If c tΔ represents the distance between our galaxy and the distant old galaxy,     

0

cd c t z
H

≅ Δ ≅ ⋅                                                (27) 

Quantitatively it represents the original Hubble’s law and qualitatively differs from 
the modern cosmic acceleration.   
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Abstract. Algorithms of sequential growth of x-graph are considered. This 
model is a particular case of a causal set approach to quantum gravity. The x-
graph is a directed acyclic dyadic graph. The sets of vertices and edges of x-
graph are particular cases of causal sets. The sequential growth of a graph is 
an addition of new vertices one by one. Five simple stochastic algorithms are 
considered. These algorithms satisfy the causality principle. Only a maximal 
or minimal vertex can be added. The probability to add a new maximal 
(minimal) vertex depend on the part of the x-graph that precedes (follows) 
this vertex. 
Keywords: random graph, directed graph, causal set. 
PACS: 02.10.Ox; 04.60.Nc 

1. INTRODUCTION 

A particular case of a causal set is considered. A causal set approach to quantum 
gravity was introduced by G. 't Hooft [1] and J. Myrheim [2] in 1978 (see e.g. [3]). 
The model of a pregeometry is a directed acyclic dyadic graph. The directed graph 
means that all edges are directed. The dyadic graph means that each vertex has two 
incident incoming edges and two incident outgoing edges. This model was 
introduced by D. Finkelstein [4] in 1988. The acyclic graph means that there is not 
a directed loop. Hereinafter only such graph is considered and it is called an x-
graph. The set of vertices and the set of edges of x-graph are causal sets. 

The far goal of this model is to describe particles as self-organized repetitive 
structures of the x-graph. The simplest repetitive structure is a sequence of double 
edges (Figure 1a). Each inextendible antichain of edges includes 2 edges. An 
inextendible antichain (a slice) is defined as set of pairwise acausal edges. We can 
prove that in the x-graphs all slices of edges have the same cardinality [5, Theorem 
5]. The second example is a repetitive structure that each antichain of edges 
includes 3 edges (Figure 1b). We can make a lot of such structures by hand. But 
the structures must emerge as a consequence of a dynamics. 
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The model of the universe is an infinite x-graph. But any observer can consider 
only finite x-graphs. In a graph theory, by definition, an edge is a relation of two 
vertexes. Consequently some vertexes of finite x-graph have less than four incident 
edges. These vertexes have free valences instead the absent edges. These free 
valences are called external edges as external lines in Feynman diagrams. They are 
figured as edges that are incident to only one vertex. External edges are not real 
edges. They are a property of vertices. But often it is useful to consider external 
edges as edges. There are incoming and outgoing external edges. We can prove 
that in the x-graphs the number of incoming external edges is equal to the number 
of outgoing external edges [5, Lemma 5]. 

 
FIGURE 1.  Simple repetitive structures.  

 
Each x-graph is a model of a part of some process. The task is to predict the 

future stages of this process or to reconstruct the past stages. We can reconstruct 
the x-graph step by step. The minimal part is a vertex. We start from some given x-
graph and add new vertices one by one. This procedure is proposed by author in 
1998 [6, 7]. Similar procedure and the term `a classical sequential growth 
dynamics’ are proposed by D. P. Rideout and R. D. Sorkin for other model of a 
causal set in 1999 [8]. 

We can add new vertices only to external edges. This procedure is called an 
elementary extension. There are four types of elementary extensions (Figure 2). In 
this and following figures the x-graph G is represented by a rectangle because it 
can have an arbitrary structure. The edges that take part in the elementary 
extension are figured by bold arrows. The new vertex is a maximal or minimal 
element of the causal set of vertices. There are two types of elementary extensions 
to the future. First type is an addition of a new maximal vertex to two outgoing 
external edges (Figure 2a). Second type is an addition of a new maximal vertex to 
one outgoing external edge (Figure 2b). Similarly, there are two types of 
elementary extensions to the past. Third type is an addition of a new minimal 
vertex to two incoming external edges (Figure 2c). Fourth type is an addition of a 
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new minimal vertex to one incoming external edge (Figure 2d). We can prove that 
we can get every connected x-graph by a sequence of elementary extensions of 
these 4 types [5, Teorem 2]. 

By assumption, the dynamics of this model is a stochastic dynamics. We can 
only calculate probabilities of different variants of elementary extensions. In 
general case, these probabilities depend on the structure of an existed x-graph. 

Consider simple combinatorial rules to calculate probabilities. All algorithms 
include 3 steps. The first step is the choice of the elementary extension to the 
future or to the past. We assume time symmetry. Then the probability of this 
choice is 1/2. The second step is the choice of the first external edge that takes part 
in the elementary extension. Denote the probability to choose the external edge 
number i by pi. The third step is the choice of the second external edge number j 
that takes part in the elementary extension. Denote the probability to choose the 
external edge number j by pij if we chose the external edge number i at the second 
step. These probabilities depend on the structure of the existed x-graph. 

 
FIGURE 2.  Elementary extensions: (a) the first type; (b) the second type; (c) the third type; (d) 

the fourth type. 
 

In the considered model, we assume the causality principle in the following 
form. The probability to add a new maximal vertex can depend only on the 
subgraph that precedes this vertex [8]. Similarly, the probability to add a new 
minimal vertex can depend only on the subgraph that follows this vertex. 

Consider simple variants of the sequential growth dynamics. 
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2. TWO SIMPLEST ALGORITHMS 

There are two constants that describe the size of x-graph. These are the number 
N of vertices and the number n of incoming (or outgoing) external edges. The 
simple normalization of probabilities is proportional to N-1 or n-1. If we chose n-1 
and we assume that pij = pji, we get a unique algorithm [9]. We can introduce this 
algorithm in the following simple form [10] (Figure 3a). Let choose the elementary 
extension to the future (the variant to the past is the same). We choose the 
incoming external edge. We assume the equiprobable choice. The probability of 
this choice is 1/n. Then we choose two directed paths from this incoming external 
edge. We must choose 1 edge in each vertex of the path. Consequently if this is 
equiprobable choice, the choice of this path has the probability 2-k, where a 
directed path includes k vertexes. Each directed path ends in some outgoing 
external edge numbers i and j. A new vertex is added to these outgoing external 
edges. If these edges coincide, this is the addition of a new vertex to one outgoing 
external edge (Figure 2b). We get the right normalization of probabilities because 
the path ends in one and only one outgoing external edge in any case. 

 
FIGURE 3.  (a) The first algorithm. (b) The second algorithm.  

 
If we chose N-1 as a normalization constant and we assume that pipij = pjpji, we 

get a second unique algorithm [11]. We can introduce this algorithm in the 
following simple form (Figure 3b). The procedure is similar to the previous. But 
we choose the vertex instead the incoming external edge. We assume the 
equiprobable choice. The probability of this choice is 1/N. 

These are the simplest algorithms that satisfy the causality principle. But they 
cannot describe decay. Consider the decay of some process (Figure 4). A new 
separate part G2 of the x-graph must emerge during the sequential growth. In the 
considered algorithms, if the first directed path ends in G2, the second directed path 
must end in G2 too. Such addition of new vertices to G2 must repeat many times. 
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But this has a small probability in the big x-graph. Often the second directed path 
ends in the other part G1 of the x-graph. 

 

 
 

FIGURE 4.  The decay.  

3. THE THIRD ALGORITHM 

Consider a modification of the algorithm to avoid the problem of decay. The 
first and second steps are the same as in the first algorithm. We choose the 
elementary extension to the future or to the past with probability 1/2 and the first 
external edge number i that takes part in this elementary extension with probability 
1/n. Let choose the elementary extension to the future (the variant to the past is the 
same). Then we choose an opposite directed paths from external edge number i 
(Figure 5). In each vertex, we choose a continuation of the opposite directed path 
or a turn with probability 1/2. If we choose the continuation, we choose one edge 
with probability 1/2. If we choose an internal edge, we go to the next vertex and 
repeat this process. If we choose an incoming external edge, we must turn. After 
the turn in some vertex number V we choose the directed path to some outgoing 
external edge number j as in the previous algorithm. 

In this algorithm, the probability to choose the vertex of the turn exponentially 
decreases depending on the distance between this vertex and the initial outgoing 
external edge. We have the high probability to add a new vertex to small separated 
parts of the x-graph. 

4. ALGORITHMS WITH A FREE PARAMETER 

The considered algorithms have not free parameters. The probability of the 
addition of a new vertex to one external edge is a function of the structure of the x-
graph. But this elementary extension describes the interaction of the considered 
system with environment. This interaction must depend on the environment. 
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FIGURE 5.  The third algorithm. 
 
Consider a simple case. Let choose the elementary extension to the future (the 

variant to the past is the same). The probability of the addition of a new vertex to 
one outgoing external edge is equal to p. We assume the equiprobable choice. Then 
the probability to add a new vertex to any outgoing external edge is equal to p/n. 
The probability of the addition of a new vertex to two outgoing external edges is 
equal to q=1-p. We can consider some algorithm to choose the addition of a new 
vertex to two outgoing external edges that is normalized by 1 and renormalized it 
by q. 

We cannot use the previous algorithms because if we remove the paths that 
return to the initial edge, we violate the normalization. Consider a modification of 
the last algorithm. If we return to the initial outgoing external edge, we must 
choose the second outgoing edge that incident to the same vertex (Figure 6). If this 
is outgoing external edge, we choose this edge (Figure 6a). If this is outgoing 
internal edge, we continue the directed path (Figure 6b). 

This algorithm looks unnatural. Consider the fifth algorithm with edge disjoint 
paths (Figure 7). The path from the initial outgoing external edge number i to the 
vertex number V of the turn cannot have a common edge with the path from the 
vertex number V to the second outgoing external edge number j. 

We get the following algorithm. We start from the first outgoing external edge 
number i that incident on the vertex number A. Then we choose an opposite 
directed path from the edge number i. In each vertex (A, B…), we choose the 
continuation of the opposite directed path or the turn with probability 1/2. If we 
choose the continuation, we choose one edge with probability 1/2. If we choose an 
internal edge, we go to the next vertex and repeat this process. If we choose some 
incoming external edge number α, we must turn (Figure 7a). After the turn in the 
incoming external edge number α or in the vertex number V (Figure 7b) we choose 
the directed path to some outgoing external edge number j. In each vertex we 
choose one next edge with probability ½ (the vertex number C in the figure). If we 
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came to the vertex, that is included in the opposite directed path (the vertex number 
D in the figure), we must choose the edge that is not included in the opposite 
directed path. The path ends in some outgoing external edge number j. 

 
FIGURE 6.  The algorithm with the free parameter. 

 
FIGURE 7.  The algorithm with edge disjoint paths. 

 
The free parameter p describes the intensity of the interaction of the considered 

system with environment. In two extreme cases, p=1 or p=0. This is a maximal and 
minimal interaction with environment. If we start from a single vertex, we get a 
tree in the first case and a sequence of double edges (Figure 1a) in the second case. 
It is possible to have a phase transition in some value of p. 

Consider the algebraic approach to the calculation of probabilities of edge 
disjoint paths [12]. Number all internal and external edges of the x-graph. Denote 
the numbers of edges by lowercase Latin indices. Assign quantity ea to each edge 
number a. Number all vertices of the x-graph. Denote the numbers of vertices by 
capital Latin indices. Assign quantity vA to each vertex number A. By Qm(ij) denote 
the edge disjoint path from the outgoing external edge number i to the outgoing 
external edge number j. The lowercase Latin index m is the number of the path. 
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We have Q1(ij)= ei ½vA ea ½vB eb …½vD … ½vV eα vV …vC ec vD ed …vE ej for the 
path in Figure 7a. We have Q2(ij) = ei ½vA ea ½vB eb …½vD …½vV …vC ec vD ed …vE 
ej for the path in Figure 7b. We have the factor ½ for each vertex before the turn. 
This factor describes the probability to choose the turn or not. Each quantity vA 
describes the choice of one of two edges in the vertex. But if the vertex is included 
twice in the path, we have the choice of edge only in the first time. We have vA vA 
= vA. Each quantity vA is idempotent. If Qm(ij) includes some edge twice, this path is 
not allowed. We have Qm(ij)=0. Then ea ea = 0. Each quantity ea is nilpotent. 
Consider two operators E and V. By definition, put E(ea)=1 and V(vA)=½. By 
p(Qm(ij)) denote the probability to choose the path Qm(ij). We get 
p(Qm(ij))=EV(Qm(ij)). The probability pij is equal to the sum over all p(Qm(ij)) of 
allowable paths from the edge number i to the edge number j. 

5. DISCUSSION 

Many cases of deterministic algorithms are investigated by S. Wolfram for 
cellular automata and other simple models [13]. Some of deterministic algorithms 
for causal sets are investigated by T. Bolognesi in [14]. In some cases we can get 
self-organization, highly complex patterns, repetitive or nested structures by using 
very simple algorithms. 

In this paper the simple stochastic algorithms are considered. These algorithms 
are handy for a numerical simulation. If we start from a single vertex, we can 
calculate all probabilities for the first four algorithms by iterative procedures. We 
calculate all probabilities at the step number N+1 by using the probabilities at the 
step number N and some additional quantities. The number of calculations at each 
step is proportional to n2. These procedures are described in [9] and [11] for the 
first and second algorithms respectively. It is not difficult to get such procedures 
for the third and fourth algorithms. But this is not the case for the fifth algorithm. 
In this algorithm, there is an interaction of directed path and opposite directed path. 
We must calculate all paths to get all probabilities. This is impossible for big x-
graphs. But we do not need all probabilities. We can choose the variant of the 
elementary extension by a random walk at the x-graph. The calculation for the 
choice of the first external edge is proportional to n. The probability of the random 
walk exponentially decreases depending on the length of this walk. In the majority 
of cases, we need small number of calculations for the choice of the second 
external edge that approximately does not depend on the size of the x-graph for the 
big x-graph. 

There are some results of a numerical simulation for the first algorithm in [15]. 
The numerical simulation of the next algorithms is a work in progress. 
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Abstract; In this paper we  study the behavior of the strange quark matter for 
FRW model with time varying constants. We find the solutions through the 
Lie method and show that  

2c
G  =  constant,  is  correct from the mathematical 

point of view.  We  also  discuss three cases and observe that the constants  
G, c  and Λ are decreasing functions on time, while the scale factor R is 
increasing function on time and ρ is a decreasing function on time.  

 
Keywords: VSL theory, strange quark matter, bag constant. 
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1. INTRODUCTION 

     Since the pioneering work of Dirac [1],  a theory with a time variable 
gravitational coupling constant  G and cosmological term Λ  , have been 
intensively investigated in the physical literature. Belinchon  [2]  have studied the 
behavior of the constants  G, c and  Λ , with the framework of a flat Friedman-
Robertson-Walker (FRW) cosmological model, where the effects of a  c-variable 
into the curvature tensor have been studied. 
     The cosmological effects of introducing a time variation of speed of light, c, 
into the gravitational field equations, have revealed a number of tantalizing 
possibilities. If the speed of light falls sufficiently rapidly over an interval of time 
then it is possible to solve the standard horizon and flatness problems in a way that 
differs from inflationary universe. 
     There are some criticisms about the varying c  models. For instance, the speed 
of light is not dimensionless  quantity;  hence, going to a new frame, one may 
cancel its probable variations. Or, if  c and, consequently, the coupling constant of 

mailto:arti_ghogre@rediffmail.com�
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the Einstein's equations would vary, then observers in different frames would see 
the evolution of the Universe governed by different rules. However, these 
arguments are also applicable to any varying-constant model, in which some 
physical constants are made to vary. Variable Speed of Light (VSL) models 
proposed by Moffat [3] and Alrecht and Magueijo [4] in which light was travelling 
faster in the early periods of the existence of the universe, might solve the same 
problems as inflation. Einstein's field equations for FRW space-time in the VSL 
theory have been solved by Barrow [5], who also obtained the rate of variation of 
the speed of light require to solve the flatness and the cosmological constants 
problems ( see Magueijo [6]  for a review of these theories). Some authors  [7] – 
[8]  have proposed a new generalization of general relativity which also allows 
arbitrary changes in the speed of light, c, and the gravitational constant, G, but in 
such a way that the variations in the speed of light introduce correction to the 
curvature tensor in the Einstein equations in the cosmological frame. 
      The dimensional analysis has the structure of a Lie group [9]. The Lie group 
have been performed by [10] – [11],  where they study the Friedman equations in 
order to find the correct equation of state, following pioneer work of  [12]. We 
would like to emphasize that the Lie group method shows us that one of the 
assumptions  =2c

G  constant,  is correct from the mathematical point of view. 

     The possibility of the existence of quark matter dates back to early 1970's. 
Bodmer  [13], Itoh  [14],   and  Witten  [15]  proposed two ways of formation of 
quark matter: the quark-hadron phase transition in the early universe and 
conversion of neutron stars into strange ones at ultrahigh densities. In the theories 
of strong interaction quark bag models suppose that breaking of physical vacuum 
takes place inside hadrons. As a result vacuum energy densities inside and outside 
a hadron become essentially different, and the vacuum pressure on the bag wall 
equilibrates the pressure of the quarks, thus stabilizing the system. If the 
hypothesis of the quark matter is true, then some of the neutrons stars could 
actually be strange stars, built entirely of strange matter [16] – [17]. 
     Typically, strange quark matter is modeled with an equation of state (EOS) 
based on the phenomenological bag model of quark matter, in which quark 
confinement is described by an energy term proportional to the volume [18].  In 
this model, quarks are thought as degenerate Fermi gases, which exist only in 
region of space endowed with a vacuum energy density  Bc  (called as bag 
constant). 
      Also in the framework of this model the quark matter is composed of mass less 
u, d  quarks, massive s quarks and electrons. In the simplified version of this 
model, on which our study is based, quarks are mass less and non-interacting. Then 
we have quark pressure 

3
q

qp
ρ

= ,   where qρ  is the quark energy density, the total 

energy density  cq B+= ρρ  and total pressure cq Bpp −= .  One therefore get 
equation of state (EOS) for strange quark matter  [19],    

( )cBp 4
3
1

−= ρ .          (1) 
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      In this work we consider flat FRW cosmological model, filled with quark-
gluon plasma, as a perfect fluid and also assume that  G, c  and  Λ  are time 
dependent, in the context of general theory of relativity. Once we have obtained the 
field equations, we rewrite them in order to obtain second order differential 
equation, in order to apply the standard Lie procedure, in the presence of strange 
quark matter.  The paper is organized as follows. 
      In section 2, we have obtained the Einstein field equations for strange quark 
matter in FRW space time by assuming  ( ) 0=ijTdiv .  In section 3, we obtained the 
possible solutions to the field equations using Lie group method and discussed the 
behavior of constants   G, c, Λ, ρ  by assuming three different cases. Section 4 ends 
with a brief conclusion. 
 

2.  THE MODEL AND THE FIELD EQUATIONS  
 

      We consider the FRW metric of the form, 
 

 ,  d+(t)dtc- =ds 2222 Ω   (2) 
with 

 

 ( )  sindr
1

drR(t) d 2222
2

2
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
=Ω φθθ d

kr
.  (3) 

The field equations with  G, c  and  Λ  can be written as 
 

   , g (t) +T
(t)c
G(t) i8 = Rg

2
1-R ijij4ijij Λ

π   (4) 

 
where the energy momentum tensor is  

 
   , pg - u)u( T ijjiij p+= ρ   (5) 

 
and the 4-velocity  μi  is defined as   0) 0, 0, ,(c = -1iμ  such that   -1. i

i =μμ                
The equation of state of the strange quark matter can be written as ( )cBp 4

3
1

−= ρ  . 

We consider the flat model  i.e.   0=k then cosmological equations can be written 
are as follows:       

   (t),c(t) p
c(t)

G(t)8- =3H H2 2
2

2 Λ++
π&   (6) 

 
   (t),c(t) 

c(t)
G(t)8 =3H 2

2
2 Λ+ρπ   (7) 

where  dot(.) denotes derivative with respect to t and ,
.

R
RH = is the Hubble function. 
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Applying the covariance divergence to the R. H. S. of Eq. 3 ,we get, 
 

 ,0 (t)g
(t)c
G(t)8div ij4 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Λ+ijTπ   (8) 

which simplified as, 
 

 .
4

8
-

T 4
,

5
,,

j
i

4
j
ji; ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

Λ
=

c
TG

c
cGT

G
c j

ijj
j

ij

π
δ   (9) 

With the help of equation of state for strange quark matter we get 

 ( )
c
c

G
G

G
cHBc

&&&
& ρρ

π
ρρ 4

8
-4

4

+−
Λ

=−+   (10) 

By the principle of conservation for its energy-momentum tensor, we assume that 
 

( ) ,0 div =ijT  
then Eq. 9  is reduced to  

 ( ) ,04 =−+ HBcρρ&   (11) 
 

 04
8
- 4

=+−
Λ

c
c

G
G

G
c &&&

ρρ
π

  (12) 

                                      
Hence the above field equations are 

 

 ( )
  (t),c(t) 

3c(t)
4B-G(t)8

- =3H +H2 2
2

c2 Λ+
ρπ&   (13) 

   (t),c(t) 
c(t)

G(t)8 =3H 2
2

2 Λ+ρπ   (14) 

 
 ( ) ,04 =−+ HBcρρ&   (15) 

 

 .04
8
- 4

=+−
Λ

c
c

G
G

G
c &&&

ρρ
π

  (16) 

 
 
 

3. LIE METHOD 
 

      In this section we obtain the solutions of the field equations by using the Lie 
method. In order to use the Lie method, we rewrite the field equations as follows. 
From Eqs. 12 - Eq. 15, we get 

 ( ).
3
322R2

22

2

cB
c

G
R
R

R
−

−
=− ρπ&&&

  (17) 

and therefore, 
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 ( ).
3
322 2 cB
c

GH −
−

= ρπ&   (18) 

From Eq. 14, we get 
 ( ) ,

4 cB
H

−
−

=
ρ

ρ&   (19) 

therefore,  

 ( ).
3

64
2

.

c
c

B
c

G
B

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ρπ
ρ

ρ&   (20) 

Taking A=
3

64π   and then expanding, we  get 

 ( ) ,2
2

2

c
c

B
c
AG

B
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

= ρ
ρ

ρρ
&

&&   (21) 

which can also be written as,                                                         

 ( ) ( )
( ) ( ) .2

2

2.
..

c
c

c
c B

c
AG

B
B

B −+
−

−
=− ρ

ρ
ρ

ρ   (22) 

We denote for further calculation,   
 ( ) .4 τρρ =− cB   (23) 

Then Eq. 21 can be written as 

 .2
2

2
2

τ
τ

τ
τ ρ

ρ
ρ

ρ
c
AG

+=
&

&&   (24) 

Now, we apply the standard Lie procedure to this equation. A vector field  X  
  

 ( ) ( ) ,,, ρρηρξ ττ ∂+∂= tttX   (25) 
is a symmetry of Eq. 23  iff 
 

 
( ) ( )

( ) 0])([32

22
.

2

32

=−−+−−−+

−−+−++−−

τττττ

τττττττ

ρρττρρτρ

τρρρρρρρ

ξρρξηηξρξη

ρξρξηρξηηηξ

&&&

&&&

ff

ff

ttt

ttttttt
  (26) 

By expanding and separating Eq. 25  with respect to powers of  τρ& , we obtain the 
system of differential equations 

 ,01 =+ −

τττ ρτρρ ξρξ   (27) 
 ,02 12 =−+− −−

ττττ ρττρρρ ηρηρξη t   (28) 

 ,0232 12
2 =−−− −

tttt c
GA ηρξρξη τρτρ ττ

  (29)           

 ( ) ,0222 2
22

2
32 =−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−− τρρττ ρξηρηξρη

ττ c
GA

c
GA

c
cG

c
GA ttt

&&
  (30) 

 
Solving Eq. 26 -  Eq. 29,  we find that  

 ( ) ,2, aett T +−=ρξ              ( ) ( ) ,, ττ ρρη fbtt +=   (31) 
subject to the constrain, 
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 ,
2

42
..

aet
efbt

c
c

G
G

−
−+

+=   (32) 

                                                          
with  a, b, f  and e are constants. In order to solve Eq. 31, we consider the 
following three cases. 
 
 

3.1.  Case I :  b = 0  and  f - 4e = 0 
 
In this case,  Eq.(31) reduces to  

             
c
c

G
G && 2

=         ⇒    B
c
G

=2
  = constant ,        (33) 

which means that constants  G and  c vary but in such a way that the relation  
2c

G   

remains  constant. 
      In order to obtain the  complete solutions  of  the field equations, consider the 
above  Eq. 32  as a hypothesis.  This case shows us that such hypothesis is correct 
from the mathematical sense. The knowledge of one symmetry X  might suggest 
the form of a particular solution as an invariant of the operator X  i.e. the solution 
of  

 ( ) ( ) .
,, τ

τ

τ ρη
ρ

ρξ t
d

t
dt

=   (34) 

                                                                                                  
This particular solution is known as an invariant solution. Therefore, the quark 
energy density  ρ

 
is obtained as 

 ( ) τρ
ρ

e
d

aet
dt t

42
=

+−
    ⇒    ( ) .2 2

0
−−= aetρρτ   (35) 

With the help of Eq. 22 we get  
 ( ) ,a-2et=  -2

0ρρ   (36)             
for simplicity, we adopt 

 .=  2
0 cBt +−ρρ   (37) 

                        
From Eq. 12, we can obtain ρ  , and hence R (the scale factor) as  :   

 4
1=  −+ RcBcρ   ⇒      ,2

1

0 tAR =     (38) 

where 1c  is the constant of integration and 
4
1

0

1
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ρ
cA .  In this way we find H and 

from  Eq. 13, we obtain the behavior of Λ  as  
 ,83 2

22 ρπ
c

GHc −=Λ   (39) 

and therefore, 

 ,
8

222 c
BB

tc
l cπ

−=Λ   (40) 
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where, .8
4
3

0ρπBl −=  If we replace all these results into Eq. 15, then we obtain the 

exact behavior for c, i.e., 
 ,

)()(4 21 tFtBtF
l

c
c

π
−

=
&   (41) 

where,  ,)( 2
01 tBtF c+= ρ    ,2

)(
2

)(4
)(

1

2

1
2 +−=

tF
tB

tBF
ltF c

π
    and thus,  

 
 ,0

α−= tcc   (42) 

where     ,
0ρλ

λα
+

=   .
8 B

l
π

λ =      

Thus in this case we have found that 
 
     ,2

0
α−= tGG      ,=  2

0 cBt +−ρρ      ,0
α−= tcc  

                   ,tA=  2
1

0R        ,8 2
2

0

)1(2
0

αα π t
c
BBt c−Λ=Λ −−         (43) 

       
3.2.  Case II : b = a = 0 

 
    In this case, the Eq.  31 reduces to  

 
et

ef
c
c

G
G

2
42 −

+=
&&

  ⇒      ,0
2

kBt
c
G

=   (44) 

where 20 −= δk   and  .
2e
f

=δ  

Similarly by using the above procedure, we find that  
 ( ) ( )τ

τ

τ ρη
ρ

ρξ ,, t
d

t
dt

=         ⇒       .=  0
δ

τ ρρ −t     (45) 

Again by using Eq. 22  we get, 
 .=  0 cBt +−δρρ   (46) 

 
We must impose the condition  +ℜ∈δ . This solution has a physical sense since the 
quark energy density   ρ is decreasing function of time.  It is also observed that if  
 f = 4e  then we obtain same solution that we obtained in case I. The scale factor is 
found to be  

 ,4
0

δ

tAR =   (47) 
 
where  A0  is constant. Hence the Hubble parameter is 

 ,
4t

H δ
=     i.e.  .1

t
H ∝        (48) 

                                  
To obtain the behavior of the constants  G, c  and Λ , we follow the same steps as 
in case I, i.e. from Eq.  13, we get 
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 ,83 2
22 ρπ

c
GHc −=Λ   (49) 

and  therefore, 

 ,8
222

0

c
tBB

tc
l k

cπ
−=Λ   (50) 

 where    0

2

8
16
3 ρπδ Bl −=    i.e.   .+ℜ∈l            

 Therefore, 

 .2812 02

10

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ +−=Λ

−

c
ctk

c
tBB

c
c

t
l

k
c &&& π   (51) 

If we substitute all these results into the Eq. 15  we get 

 ,
)(
)(

3

4

ttF
tF

c
c

=
&   (52) 

where,  ),(22
4

)( 13 tFtB
B

ltF c +−= δ

π
    )(

4
)( 104 tFktkB

B
ltF c +−

−
= δ

π
  

and    −ℜ∈
)(
)(

3

4

tF
tF   and   thus,  

 ,0
α−= tcc   (53) 

   

 with  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−
=

c

c

B

B
k

0

00

2 ρ
λ

ρ
λ

α   and 
cBB

l
π

λ
4

=   such that ).1,0[∈α          

In this way we can find the rest of the quantities 
 
             ,02

0
ktGG +−= α      ,=  0 cBt +−δρρ      ,0

α−= tcc  
 

                          ,tA=  4
0

δ

R        .8
2

0

)2(
)1(2

0

0

c
tBBt

k
c

α
α π +

−− −Λ=Λ       (54) 

We notice that this solution is very similar to the case I, but in this case all the 
parameters are perturbed by  δ and more important is the result .0

2
kBt

c
G

=  

  
3.3. Case III : b = e = 0 

 
 Following the same procedure as above, we find in this case that  Eq. 30  
                                      ⇒  ( ) ,, at T =ρξ    ( ) ττ ρρη ft =,    
and therefore,   

 .2
a
f

c
c

G
G

−=
&&   (55) 

                                   
After integration we get 

 ),exp(2 tK
c
G α−=   (56) 
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where  
a
f

=α   and  K  is constant of integration. 

 ( ) ( )τ

τ

τ ρη
ρ

ρξ ,, t
d

t
dt

=    ⇒    
τ

τ

ρ
ρ

α f
ddt

=    ⇒     .=  0
te α

τ ρρ   (57) 

         
With the help of Eq. 22  we get, 

 .=  0 c
t Be +αρρ   (58) 

This equation only has sense if  .−ℜ∈α The scale factor R satisfies the relationship 

 4
1=  −+ RcBcρ     ⇒    .

4
exp0 ⎟

⎠
⎞

⎜
⎝
⎛ −

=
tAR α         (59) 

That is to say, it is a growing function without singularity. In this way, we find that  
     =

−
=

4
αH  constant .          (60) 

To obtain the behavior of the constants  G, c and  Λ ,we follow the steps as in case 
I, i.e. from Eq. 13, we get, 

 ,83 2
22 ρπ

c
GHc −=Λ   (61) 

and  therefore, 
 ,82 t

c eKBlc απ −−=Λ   (62) 

where,    .8
16

3
0

2

ρπα Kl −=   Therefore  

 ( ),81
2

t
ceKBl

c
απ −−=Λ   (63) 

 and hence     

 .242
2 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−

−
=Λ −

c
ceKB

c
cl

c
t

c
&&& απ α   (64) 

If we replace all these results into Eq. 15 then we obtain, 

 ,
)(
)(

6

7

tF
tF

c
c

=
&   (65) 
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and hence, 
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c  and  K1 is constant of integration with .0

−ℜ∈c i.e. c  is a 

decreasing function on time t.In this way we can find the rest of the quantities. 
Hence we have 
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4. CONCLUSION 
 

      The constant c was first introduced as the speed of light. However, with the 
development of physics, it came to be understood as playing a more fundamental 
role, its significance being not directly that of a usual velocity and one might thus 
think of c as being a fundamental constant of the universe. In this paper we have 
studied the behavior of time-varying constants G, c  and  Λ , for  flat FRW space 
time in the presence of strange quark matter. To obtain the solution using the Lie 
group tactic we  have imposed  the condition, ( ) 0=ijTdiv  and  considered  three 
different cases. 
      In  case I  when b=0  and  f-4e=0,  we get and relationship,

 2c
G  =  constant = B 

, remaining constant for all values of t, i.e. G  and  c vary but in such a way that  
2c

G  remains constant. It is also observed that G, c  are decreasing function and the 

cosmological term Λ  is also a decreasing function of t for negative value of  α  and 
scale factor R  is increasing and quark energy density ρ is a decreasing function of 
t. Hence, the solutions are physically relevant.  
     In case II, it is also observed that R is growing and quark density ρ is 
decreasing function on t, while G, c are decreasing function on t and the 
cosmological term  Λ  is also a decreasing function of t  when k0 and  α  are 
negative and it is also observed that Hubble parameter  .1

t
H ∝   In this case we 

also note that  α < 1, because when α  = 1 ⇔  δ= 0  is forbidden and α  = 0  brings 
us to the limiting case of G, Λ variable cosmologies. 
     In  case III, we get inflationary solution (Yilmaz and Yavuz  [20]). This is 
plausible, because the phase transition of quark-gluon plasma occurs in the early 
universe. The scale factor R is exponentially increasing and quark density ρ  is 
exponentially decreasing function on t.  In all the above three case it is also 
observed that when  ρ0 =0   we get   ρ = Bc,   ,   the relation obtained earlier by 
Yilmaz and Yavuz  [20] for flat FRW model. We have discussed three cases 
playing with constants a, b, e, f. More solutions can be obtained but we are 
interested only in the solutions with physical sense.  
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Abstract: Modern physics confirms the impossibility of Superluminal Motion 
through the considerations of Special Relativity. In General Relativity we may 
apply this constraint rigorously only to the Local Inertial Frames where Einstein’s 
Field Equations are linear. This article, incidentally seeks to investigate the 
possibility of  Pseudo-Superluminal motion in the non–local context without 
violating Special Relativity  
Keywords: General Relativity, Local Inertial Frames, Manifold, Tangent Plane 
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                                           INTRODUCTION 
 
 Finite speed of signal transmission is one of the greatest discoveries that 
have revolutionized modern physics. Special Relativity1 through its second 
postulate claims that  the speed of light is independent of its source. Though very 
much counter-intuitive if viewed through the “classical ideas” it turns out to be an 
amazing fact. In combination with the first postulate of relativity it  leads to the 
novel aspect of space and time getting mixed up into a composite fabric. One of 
the fundamental outcomes of all this is the finite speed of signal transmission.  
  Incidentally all this refers to what we know as Flat Spacetime or Minkowski 
Space2. General Relativity is heavily based on the concept of the Local Inertial 
frames(LIF) which break up curved space into a set of small inertial territories. 
Curved Spacetime is governed by Einstein’s Field equations which are non-linear 
in nature. But the Local Inertial frames offer us the advantage of Special 
Relativity---the Field Equations become linear. Calculations become simpler and 
comfortable in Flat Spacetime which exists here only in the local context, of 
course. 
 
                              NON-LOCAL CONSIDERATIONS 
 
     Now we consider the observation of an event at a point Q from a point P such 
that they have a  finite separation between them, so that both my not be located in 
the same Inertial local frame. But each point carries its own LIF with it. In our 
“thought experiment “we have two observers one at P and the other at Q. A light 
ray flashes across an infinitesimally small, spatial interval at Q. It is observed from 
both the points P and Q. The spatial interval noted by both is the same. But the 
time recorded for the passage is different for the observers since their clocks run at 
different rates, the metric coefficients pertaining to time , generally speaking , are 
different for the two points. 

mailto:palit.anamitra@gmail.com�
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                  FIGURE 1. Local and Non-Local observations Metric3: 
 

 2 2 2 2 2
tt zz yy zzds g dt g dx g dy g dz= − − −                                       (1) 

 
Spatial interval at Q: 

2 2 2( ) ( ) ( )xx yy zzdL g Q dx g Q dy g Q dz= + +  
  
Both the observers record the same value for the above. 
Non-Local time interval observed from P:  

( )P ttdT g P dt=                                         (2) 
Local time interval observed from Q: 

( )Q ttdT g Q dt=                                                    (3) 

Non-Local Observation: Speed of  light at Q as observed from P: 
( )P

tt

dLc
g P dt

=  

Local Observation: Speed of light at Q as observed from Q:
( )Q

tt

dLc
g Q dt

=  

But the speed of light as observed from Q is the local speed of light  that is, Qc c=

,where c is the standard value for speed of light in vacuum as we know it.  
Therefore, 

( )
( )

ttP

Q tt

g Qc
c g P

=  

or 
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( )
( )

tt
P Q

tt

g Qc c
g P

= × . 

 
Non-Local speed of ligh, Pc , is given by: 

( )
( )

tt
P

tt

g Qc c
g P

= ×                                                      (4) 

[ Qc c= :Observation being Local] 
Therefore the speed of light for non-local observation may be greater than, equal 
to, or less than the speed of light “c” as we know it, the standard value, depending 
on the value of the ratio ( ) ( ):tt Q tt Pg g

      
 
Now let’s consider a particle moving across an infinitesimally small spatial 
interval at Q (instead of a light ray). 
Spatial separation: 2 2 2( ) ( ) ( )xx yy zzdL g Q dx g Q dy g Q dz= + +  
Both observers record the same value for it. 
Time interval observed from P: ( )P ttdT g P dt=  . 
 
Time interval observed from Q: ( )Q ttdT g Q dt=  
 

Non-Local Observation: Speed of particle at Q as observed from P:

( : ) ( )P particle
tt

dLv
g P dt

=  

Local Observation: Speed of particle at Q as observed from Q:

( : ) ( )Q particle
tt

dLv
g Q dt

=  

Therefore, 

( : )

( : )

( )
( )

P particle tt

Q particle tt

v g Q
v g P

=  

( : ) ( : )
( )
( )

tt
P particle Q Particle

tt

g Qv v
g P

= ×           (5) 

So the non-local speed of the particle, ( : )P particlev , may exceed the standard 

local value of the speed of light depending on the value of the ratio ( ) ( ):tt Q tt Pg g  
Incidentally the local speed of the particle is always less than the local speed of 
light, that is 

( : )Q particlev c<  
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Therefore from relation (5) we have, 

( : )
( )
( )

tt
P particle

tt

g Qv c
g P

< ×                                          (6) 

But the right hand side of relation (6) is the non-local speed of light [see relation 
(4)]. Therefore 

    ( : )P particle Pv c< .            (7) 
 Thus the non-local speed of the particle is less than the non local speed of 
light, though the non-local speed of the particle can exceed the local standard 
speed of light in vacuum depending on the value of the ratio: ( ) ( ):tt Q tt Pg g .The 
light ray is always ahead of the particle does not matter whether you are concerned 
with local or non-local observation. We are not violating relativity in any manner. 
Now the non-local speed of light or some particle is important in deciding the 
average speed of light coming across a finite interval of space Time of  non-local 
time of  travel of a light ray is given by: 

 
 
 

(8) 
 
 
 
 

The average speed of light for non-local travel across macroscopic distances: 
 
 
 
 
 

(9) 
 
 
 
 
 
 

So the average speed of light may be different from the local speed “c”(which 
corresponds to the known value - the speed of light  in vacuum). 
When a light ray is coming towards an observer across some interval of space he 
would be more interested in the average speed of light over the interval than the 
local speed of light local speed of light for various points traversed by the light ray. 
 
                               

( ) / ( )
:

( ) / ( )

tt tt

A

B
tt tt

dLdT
g P g A c

Time Taken
dLT

g P g A c

=
×

−

=
×∫

( ) / ( )

( ) / ( )

A

B
Average A

B tt tt

A

B
A

B tt tt

dL
c

dL
g P g A c

dL
c c

dL
g P g A

=

×

= × ≠

∫

∫

∫

∫
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SYNCHRONIZATION OF CLOCKS: 
 
 For the purpose of synchronization4 of clocks we take the speed of light 
constant over large  macroscopic distances. It is really justified in view of the fact 
that the speed of light may change in the non-local sense especially when we are 
considering sensitive experiments like the OPERA5 or ICARUS6. It would be an 
interesting reminder for us that the OPERA experiment failed (due to cable fault: 
loose cable connection) with the condition that the speed of light was taken to be 
constant with respect to  observation stations in disregard of the fact that the light 
ray traveled over large macroscopic distances in the process of synchronization. 
The ICARUS experiment succeeded on the basis of the same “aspect” ---the non-
local variation of the speed of light was not given a due consideration. 

Sample Calculations 

 
FIGURE 2. Transmission of light ray from a satellite to two earth stations at A and B 
 
     The above figure shows a “non-rotating “ earth-like planet with observation 
stations at A and B. S is a satellite from where light signals are being sent. These 
are being received at the earth stations A and B. O is taken to be the 
z:axis.OP=r;∠SOP=θ. OS=d, a fixed “coordinate distance”.∠OSP=α, a 
fixed/constant angle. PN is perpendicular to OS. 
Now, ON=rCosθ, SN=OS-ON=d-rCosθ,   

            tan PN rSin
SN d rCos

θα
θ

= =
−

, 

tan tand r Cos rSinα α θ θ− =                      (10) 
Taking differentials from (10) we have: 

( tan ) ( tan )dr Sin Cos rd Cos Sinθ α θ θ θ α θ+ = −              (11) 
Again from relation (10) we obtain: 

tan
tan

dr
Sin Cos

α
θ α θ

=
+

 .                                            (12) 
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Schwarzschild’s  Metric: 
 

2 2 2 2 1 2 2 2 2 2(1 2 / ) (1 2 / ) ( )ds GM c r dt GM c r dr r d Sin dθ θ ϕ−= − − − − +  
 
The spatial element on the line SB, say at P, is given by: 
 

    

1 2

2 2

2 ( tan )1 1
( tan )

GM Cos SindL rd
c r Sin Cos

θ α θ θ
θ α θ

−⎛ ⎞−⎛ ⎞= − + ×⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
                              (13) 

Spatial element on AS is given by: 
1/2

2

21 GMdL dr
c r

−
⎛ ⎞= −⎜ ⎟
⎝ ⎠

                                                 (14) 

[Since both α and θ are zero on AS]. 
Time of travel of light ray from B to S:  

1 2

2 2

2

2

2 ( tan )1 1
( tan )

21
( )

21
( )

P

S

GM Cos Sin
c r Sin Cos

T rd
GM

c r P
c

GM
c r S

θ

θ

θ α θ
θ α θ

θ

−⎛ ⎞−⎛ ⎞− +⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠= ×
⎛ ⎞

−⎜ ⎟
⎝ ⎠×
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∫
             (15) 

“r” may be taken from (12).  
Time of light ray  from S to A: 

1

2

2

2

21

21
( )

21
( )

P

S

r

r

GM
c rT dr

GM
c r Pc

GM
c r S

−
⎛ ⎞−⎜ ⎟
⎝ ⎠= ×
⎛ ⎞

−⎜ ⎟
⎝ ⎠×
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∫                                          (16) 

Incidentally, for this path θ and dθ are both zero. So we have considered 
integration with respect to dr. 
 These calculations take care of the “tick rate” at each point on the path of the 
light ray while in they GPS they consider the tick rates at the point of transmission 
and reception only.  
 
        NON-LINEARITY OF EINSTEIN’S FIELD EQUATIONS 
 
 The fact that Einstein’s field equations are non linear is a well known fact in 
physics. But in the inertial frames of reference the Christoffel symbols7evaluate to 
zero value and the field equations are no more non linear. They become linear. So 
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if you are working in a laboratory you are enjoying the privilege of linearity which 
is not there outside your laboratory if it(lab) happens to be a local inertial frame. 
For non local observations the non linearity of the field equations are supposed to 
play a very big role as in our case of pseudo superluminal motion. One issue 
becomes important in this respect: to what extent is our lab fixed on the earth’s 
surface is an inertial frame of reference? 
 
                                  Lab Fixed on the Earth’s Surface 
 
 You are working in your small laboratory room fixed on the earth so that 
you may call it a local inertial frame[And you are working for a suitably small 
interval of time]. Now you may think of a freely falling lift in front of you. That lift 
is a better approximation of a LIF. Your  Lab room does not correspond to the 
“better approximation”. The contrast should would become glaringly conspicuous 
if you imagine the “gravity” to be a million times stronger---that is if you consider 
your lab room to be in a region of strong spacetime curvature. The freely falling 
lift is a LIF while your lab room in this example may be termed as a “Local Non 
Inertial Frame”. The basic advantage provided by the Local Inertial Frames is the 
Special Relativity context. The point that naturally arises is that to what extent do 
we expect deviations from SR in the local non-inertial frame? 
 
                             The Tangent Plane to the Manifold 
 
 Let us consider the tangent plane8 at the point of contact P with the curved 
spacetime surface. The tangent surface offers the advantage of the Special 
Relativity context. Since time goes on changing in both the tangent plane and the 
curved surface(though differently), our laboratory, its spacetime, 
location(coordinates) at the most can be at a momentary contact with the point 
P.Then the space-time point of the laboratory will move along the curved surface 
unless we make some technological arrangement of containing our laboratory on 
the tangent plane by arranging a freely falling frame.To materialize the local 
transformation from 4D curved space to Minkowski space we have to arrange a 
freely falling frame--the falling lift in the simple this case of the earth.  
 
Let the coordinates of the curved 4D surface be  and the local coordinates 
on the tangent surface at P: 0 1 2 3( , , , )ξ ξ ξ ξ . The first coordinate in parenthesis 
represents time in each system. If we want to keep the  on the tangent surface in 
order to enjoy the advantage of Special Relativity, the lift should accelerate wrt to 
the curved surface (generally speaking).  
 Transformations (Equation Set 17) 
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Our the tangent plane is actually an inertial frame of reference. Consider a world 
line on it through the point of contact, P a  short world line of course . Let us 
denote the world line by: 

0 1 2 2( , , , ) 0F ξ ξ ξ ξ =                                            (18) 

For the transformed values  the quantities , , in general will be 
non zero. 
 To understand the situation at the point of contact we consider a simpler analogy. 
We take the parabola given by: 2y x= . Gradient: 2dy a

dx
=  The tangent to it at the 

point M(a,b) is given by:  
2y b a

x a
−

=
−

 

 At the point M(point of contact) the value of dy
dx

is identical for both the 

parabola and the tangent which is a straight line in this case. But what about the 

second order derivative,
2

2

d y
dx

? For the parabola: 
2

2 2
M

d y
dx

⎡ ⎤
=⎢ ⎥

⎣ ⎦
. For the straight line:

2

2 0
M

d y
dx

⎡ ⎤
=⎢ ⎥

⎣ ⎦
. The second order derivatives differ even at the point of contact. You 

may translate this example to higher dimensions. 
Points to Observe: 

1. The point of contact  P on the manifold and the tangent plane are not 
identical in so far as the second order derivatives are considered. The first 
order derivatives on the two planes at the point of contact are identical. But 
they are not identical(in general) at other neighboring points.   

2. To stay on the tangent plane[LIF],even at the point of contact ,P, some 
acceleration is necessary. We need a freely falling frame to stay on the said 
tangent plane. 

 
                                      Speed of Light in Local Inertial Frames 
 
 Indeed , we may write the metric: 

2 2 2
tt xxds g dt g dx= −                                            (19) 

 
2 2 2ds dT dL= −                                             (20) 

 
In the above metric, that is in (19), the x-axis has been oriented along the 
infinitesimal path of a light ray. Now 2 0ds =  for the null geodesic. Therefore from 
relation (20) we have, 
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1dLMod
dT

⎡ ⎤ =⎢ ⎥⎣ ⎦
 

Incidentally c=1 in the natural units and we have the same invariable speed of light 
in vacuum provided we define physical time interval  as: ( ) ttdT physical g dt=   
dt is the coordinate time interval. 
We are getting the speed of light “c”[standard value] with respect  to the tangent 
plane. Incidentally, equation (20) corresponds to the tangent plane, the LIF.What 
about equation (19)?It represents curved spacetime. At the point of contact we ,of 
course, get the same value for the first order derivative for both the surfaces of 
which the speed of light is an example. But even for short distances this fails—the 
picture is so tricky even in the contest of the local inertial frames. Pseudo super 
luminal speed of light in the non-local context is coming into picture! We may try 
to  calculate the acceleration of the light ray at the point of contact of the tangent 
plane with the manifold(wrt to the manifold).Any deviation from an LIF  due to 
absence of correct amount of  acceleration required to stay on the tangent plane 
will necessitate such an investigation. 
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Abstract. This paper is aimed at critical analysis of velocity measurement of 
a high velocity particle. In the course of analysis, time dimension is a 
hypothetic vector dimension and assumed to be perpendicular or independent 
of rest three space vector dimensions (X,Y,Z) simultaneously, in the form of  
ct where c is the velocity of  any electromagnetic wave or light in vacuum 
(assumed to be constant in all the reference frames). Analysis shows that 
when a particle starts moving at a very high velocity with respect to any 
stationery reference or observer, an error in the measurement is inherently 
introduced in the measured position and velocity, as velocity of light is finite. 
Hence, the observed velocity v0 is correlated with practical velocity vp. This 
correlation is used for further interpretation of high velocity relativistic 
phenomena of particle behavior. Results obtained goes with the particles 
behavior obtained using special theory of relativity by Prof. Albert Einstein 
taking all the equations given by him is based on the observed velocity of the 
particle or reference, not the practical velocity 

Keywords: time vector, theory of relativity  

INTRODUCTION 

Lots of work has been continuously going on the theory of special relativity since 
last hundred years. Practical verification of the same, in it’s different aspects, has 
established the theory on a mammoth basement. In this paper one basic assumption 
of special theory of relativity is critically analyzed. When we assume one reference 
frame is moving at a velocity v with respect to other, then space and time 
dimensions are found to get changed according to theory of special relativity. Now 
if we critically analyze, it is never possible to determine the position and velocity 
of a moving object correctly, sensing only the electromagnetic waves coming of it 
i.e. light. This is due to the fact that light takes some time to reach the observer and 
when it reaches the observer, particle is not at the same position, as the observer is 
observing at that instant. Hence there is a difference between the actual velocity or 
practical velocity of the particle vp and the observed velocity v0 by an observer in 
the same reference frame. Now if further analysis is done it can be seen that 
Galelian transformations are valid throughout the range of practical velocity vp 
how much higher it might be. Lorentz’s transformation is true with observed 
velocity v0. The ambiguity or violation of Galelian transformations or general 
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theory of relativity are observed at a very high velocity of particle due to the fact 
that, observed velocity v0 is much apart to vp at higher velocities. Whereas the 
above correlations are only true for practical velocities of particles not the 
observed velocities. At low velocities it can be shown that vo ≈ vp . Hence at lower 
velocities, results go with general theory of relativity but fails at higher velocities. 
 

CONCEPT OF TIME VECTOR 
 

 
FIGURE 1.  Figure showing time vector axis in two dimensional space plane 

 
In determination of the amount of error involved in the measurement of velocities, 
a new concept of time vector is proposed. Concept of time dimension as a vector is 
little bit difficult to visualize. In this section this concept is tried to be qualitatively 
explained. 

 In space we can define any point by using three independent vectors i.e. X, 
Y, Z. if we need to define time of any event at that point, time comes as 4th 
dimension. Now in the concept of time vector, we assume time is another 
dimensional vector represented as ct. The direction of ct vector is such that it is 
independent hence perpendicular to all other three space vectors i.e. X, Y, Z. 
Physically it is difficult to visualize that four vectors simultaneously perpendicular 
to each other at a single point. But, this is just to emphasize the physical 
independence of all the vectors with each other. 

 For the ease of understanding let us consider a two dimensional plane having 
two axis X & Y. now if any event takes place at any time t=0 at point P, observers 
at Q, Q’ & Q’’ will be getting the information at t = r/c. where r= 
|PQ|=|PQ’|=|PQ’’|. Now if, P point is shifted by an amount of X or Y, then all 
the three points can never see the incident at same time. If the incident takes place 
at P at t=t1, it physically does imply that all the three points will get the information 
at some time t = t1’ simultaneously. Now as shifting of the incident is taking place 
in the time axis, hence it cannot be represented by shifting P point in X or Y 
direction. Hence we have to shift P point in perpendicular direction to the X-Y 

Y 
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X cT 
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plane. This perpendicular direction is defined as T-axis or time axis. And the time 
at which the event will be observed can be calculated as t1’=T. t1 +R.(r/c) 

Where, T & R represents time vector and radius vector respectively. 
 In practice the same thing will happen in three dimensional spaces and hence 

we will get the relation as 
)/()/()/(' czcycxtt rrrr

+++=                                        (1) 
 
Where x, y, z are the co-ordinates of point of occurrence, t is the time of 

occurrence and t’ is the time of observation by an observer present at the origin. 
According to this hypothesis the observation time will not be the algebraic sum of 
the space and time co-ordinates 

 
|/c)z(/c)y(/c)x(|tt'

rrr
+++≠                                     (2) 

 

RELATION BETWEEN OBSERVED VELOCITY AND PRACTICAL 
VELOCITY 

Let us now consider that a particle is practically moving at velocity vp with respect 
to reference frame. An observer at origin sees the particle to move at a velocity v0. 
now if the particle crosses point P1(x1,y1,z1) at time t1 and reaches P2(x2,y2,z2) at 
time t2 then observer at origin will see the particle to cross P1 at t1’ and P2 at t2’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 2.  Figure showing particle moving from P1 to P2  and being observed from origin  
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Now, according to equation (1) 
czzcyycxxtttt /)(/)(/)( 21212121

'
2

'
1 −+−+−+−=−                            (3) 

Therefore, 
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ltttt +−=−  
Where, l= P1P2 
As practical velocity vp = l/(t1-t2)  and observed velocity v0 = l/(t1’-t2’) 
We can rewrite the equation as  
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+=                       (4) 

Now, the equation can be re-written as  

( )220
cv

cv

p

p

+
=v                         (5) 

 
Hence if vp→ α, v0→ c. therefore if practical velocity of particle tends to infinity, 
observed velocity v0  will tend to c. Therefore, it is never possible to see any 
particle to move more than the velocity of light. But if v0 > c/√2, then definitely the 
particle is moving beyond velocity of light i.e. vp > c, but we cannot experience, 
feel or sense that as we try to see it using electromagnetic waves only. 

CORRELATION WITH SPECIAL THEORY OF RELATIVITY 

Let us now consider how dimensional change of any system can be correlated 
with the conclusions of the previous section. In the previous section we have seen 
that there is a particular relation exists between the practical velocity and observed 
velocity of any system. Now if any reference system is found to move with a 
relative velocity of v0 with a stationery reference frame, observed by an observer 
present at the origin of the stationery reference frame. Then the system is 
practically moving at a velocity of vp with respect to the stationery reference frame. 
Now, if we integrate both sides of equation (5) then for time independent velocity 
we will get  

( )220
cv

cxx
p

p

+
=                           (6) 

Where, x0 = v0.t and xp = vp.t 
Therefore now it is seen that any point on the stationery reference frame if 

observed by the moving reference frame to be at a distance of x0, then practically it 
is at a distance of xp. But, as there is no movement of the observing point with 
respect to stationery reference frame hence distance observed by the stationery 
reference frame will be xp only. Hence we can conclude that any distance xp in 
stationery reference frame while observed from a moving reference frame it will be 
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observed as x0. Therefore, if any point is at x at t=0 from stationery reference 
frame, and assuming both the stationery and moving reference frames coinciding at 
there origin at t= 0, then at any time t the observed distance between moving 
reference frame and the point will be (x-v0.t) by the moving reference and the 
distance between them observed by the stationery reference frame will be  

(x-v0.t).c√(vp
2 + c2). 

Therefore, we can say that 
( )

( )
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−=′                                     (7) 

Similarly, if we do the analysis of path traveled by light at t time we can show 
that  
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where, x’ and t’ denotes distance and time, of any point incident (not moving in 
the stationary reference frame) and a moving reference frame of observed velocity 
v0 with respect to stationery reference frame in x direction, as seen by an observer 
at the stationery reference frame origin. 

The above equations are known previously as Lorentz’s transformation. Let us 
now represent these equations in different form and analyze their physical 
implications. Hence, equation (7) and (8) are rewritten as  

( )
0

0 v
v

tvxx p−=′                                                   (9) 

0
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v
c

xvtt p
⎟
⎠
⎞⎜

⎝
⎛ −==′                                             (10) 

 Now, observing equation (9) and (10) we can say that change in the 
observed dimensions due to special relativity is a scale change by a factor of vp/v0 . 
The factor is coming into the picture due to observation error involved in the 
determination of position, velocity and instant of position of any particle due to its 
high velocity with respect to the reference frame. If we could have observed 
practical velocity of any high velocity particle more accurately, the factor would 
have been reduced to 1 and there would not have been any special relativistic 
effect. 

CALCULATION OF KINETIC ENERGY OF HIGH VELOCITY 
PARTICLES 

If we conclude from the previous section, that all the dimensional changes are 
observation errors, hence mass and energy of the particle should not also change 
relativistically. But in practice they do follow the laws of special theory of 
relativity. Now in this section this paradox is tried to be explained. 
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 According to special theory of relativity, velocity change of particle 
incorporates with change in mass. If any particle is tried to be accelerated 
continuously, its energy increment not only takes place in the form of velocity 
increment only but mass increment also. 

 Let us now consider that no mass change takes place with change in velocity 
of the particle. And thereafter, let us calculate effect of constant force and gained 
kinetic energy of an accelerating particle. 

 If we assume a continuous accelerating force F is applied to a particle to 
accelerate it, then the amount of energy stored in the particle after traveling an 
observed distance of x0 is given by the following equation. Here it can be proved 
that, if we consider particles observed velocity v0 then consideration of change of 
mass with respect to velocity is to be considered. But, if we consider practical 
velocity of particle i.e. vp, then no change in mass is required to be considered. 
This is because of the fact that observed velocity is an erroneous observation and 
does not go with Newton’s laws of motion. To compensate for the error we 
consider mass of the particle to get change. But if we directly consider practical 
velocity of the particle no such mass change compensation is required. 
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While observed at any position, the observed distance and velocity of the particle 
has to be considered. Whereas change in velocity due to application of force, will 
take place in consideration with practicals’ velocity of the particle. The above 
equation (12) is formed keeping this physical concept in mind. 

Now, if the integration is done using correlation between v0 and vp then we will 
get energy expression as following. 
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Hence, the amount of kinetic energy gained by any moving particle at any 
observed distance x0   is given by equation (14). The calculation shows that it has 
nothing to do with change in mass. And hereby it is concluded that mass never 
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changes with velocity of any particle. Momentum balance of any inertial frame can 
also be verified, in the similar fashion, considering the particle’s practical velocity 
and observed velocity properly as required. And then the postulation of change in 
mass of the particle will not be required to consider. 

 
        CONCLUSION 

 
In the above sections different aspects of critical analysis of high velocity 

particles are presented. Firstly, vector property of time is postulated and physical 
phenomena or practical implications of observed dimensional changes due to high 
velocity of reference frame are critically analyzed. Again it has been shown that 
change in dimensions as observed from high velocity reference frame is an 
observation error only. The calculation of moving particle’s kinetic energy is done 
using the postulated concept and no change in mass of the particle due to high 
velocity is proved. Whatever be our reference frame, we always see erroneous time 
and space co-ordinates of any moving particle. Special theory of relativity tells 
about any system as sensed or observed from any reference. But, specifying 
practical position and velocity of any particle is out of the scope of that theory. 
This paper enlightens quantitatively on erroneous observations and consequences. 
Further analysis and experiments can be proposed to prove this special vector 
property of time. But, derivations and explanations of well established previous 
theories on the basis of the given hypothesis, that time is a vector, establishes the 
basic postulation to a good extent. 
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Quantum Space  and One Method 
of Deformation  Quantization 
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Gori university, Chavchavadze st.53 ,Gori ,Georgia 
mmumladze@ mail.ru,  zura.zerakidze@mail.ru 

 
    Abstract. Axioms of quantum field theory [1,8] show  that the global system 

of elementary particles can be represented as co- pre- sheaf of ∗C - algebras on the 
physical space. From the properties of ∗C -algebra [5,12]  it is obvious that  this co-
pre- sheaf  is a pre-sheaf as well [9,10]. If you see those characteristics of the 
global system of elementary particles that determine the location of  individual 
particles in physical space, then the space of pure states PU of the ∗C - algebra of 
these observables will be the physical space. Each elementary particle (elementary 
field) in this space is a pair: ))(,( OO Γ , where PUO ∈  is an open set in the space of 
pure states PU of the ∗C - algebraU  of  observables of the global system of 
elementary particles, )(OΓ   is ∗C - sub algebra of ∗C - algebra U corresponding to 
the O  . We can assume that the system of elementary particles ))(,( 11 OO Γ ,

)),...,(,( 22 OO Γ ))(,( nn OO Γ , is in the n  dimensional interaction, if
Θ≠∩

= i

n

i
O

1 . Naturally, 
the system of elementary particles being in such interaction, consider a single 
particle. Let ))}(,{( αα OO Γ  be  such  a system of particles, which }{ αO   is an open 
covering of physical space. In this case, the graded ∗C - Algebras: chain complex 
with coefficients in the co- pre- sheaf })({ PUOCU O ⊂Γ=ℑ [9,10,13] and the co chain 
complex with coefficients in the  pre- sheaf })({ PUOU O ∈Γ=ℑ  [9,1013] represents the 
interactions of elementary particles in the system ))}(,{( αα OO Γ . We can also assume 
that the boundary and the co-boundary operators of these graded ∗C -  algebras are 
the annihilation and creation operators, respectively. When U  is a commutative ∗C

- algebra, the corresponding physical space is a classic, but when the U  is a non- 
commutative ∗C - algebra, corresponding physical space is a quantum [4]. In 
applying the theory of universal representations of C* - algebras constructed a 
continuous deformation of non-commutative   C*-algebra to a commutative C* - 
algebra, which is called "a deformation quantization"[4].  Classical and quantum 
physical spaces, resulting  by such construction of deformation quantization are 
homotopy equivalent. 

  Keywords: ∗C - algebra, co-pre- sheaf ,  pre- sheaf , chain complex, co- chain 
complex, annihilation operator, creation operator, n  - dimensional interaction, 
deformation quantization, classical spaces, quantum  spaces, gravitational collapse, 
black hole . 

  PACS: 02.40.Re, 04. 60.Rt, 03. 70. +K 
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1. STRUCTURAL    PRE-SHEAF  OF ∗C -ALGEBRA 
 
    Let U  be a ∗C -algebra, FU  be s set of states on this algebra [5,12]. Consider 

the universal representation )(: U
U HU ℑ→π  of the algebra U [5,12], where

f

FUf

U HH
∈
⊕=

and fH is the Hilbert space associated with a state f . As we know, a 
universal representation is an exact one, it is an isometric embedding.  

       Let UU ⊂′  be a sub algebra of the ∗C -algebra U . According to the Khan-
Banach theorem, the mapping UFFUQ ′→:  defined by the formula UffQ ′= |)( is 
surjective.    

       Consider the Hilbert space  
U

U

f

UFf

U HH ′

′ ′∈
⊕= |

| .  Clearly, there exists an 
isometric embedding 

UU
U HHI →′

′ :  and therefore it can be assumed that UU HH ⊂′        
Consider the projector 

UU
U HHP ′

′ →: .  Let )( UHA ℑ∈ , then )( U
UU HIAP ′

′′ ℑ∈oo and 
we have the ∗ -morphism )()(: UU

U HHT ′ℑ→ℑ defined by the formula  
UUU IAPAT ′′= oo)( . 

       If )(: U
U HU ′

′ ℑ→′π  is a universal representation, then we assume that
UUU ′→′ :τ   is the mapping defined by the formula UUT UUUU ′→= −

′′ :1 ππτ oo . It is 
well-defined because if )(UA Uπ∈ , then from the construction of the universal 
representation it follows that )(UIAP UUU ′∈ ′′′ πoo , which means that UUU ′→′ :τ is 
well-defined.  

       Let imUPr   be the space of primitive ideals of the  ∗C  -algebra U . with 
Jacobson topology [5,12]. The elements of this space are the kernels of irreducible 
representations of the  ∗C -algebra  U . It is obvious that these kernels are bilateral 
ideals. Let us assume that UU ′⊂′ . Consider those irreducible representation Uπ

which have the form U
UU

′
′= τππ o ,where )(: HUU ′ℑ→′′π .  The set of kernels of 

such representations is a subset of the space imUPr .  
     Let us now consider the space Uim ′Pr  and the mapping imUUimS PrPr: →′  

defined by the formula 
U

U imS πβββτβ ker,Pr);()( 1 =∈= −
′ .  This mapping is an 

injection since if  
  ,,,;Pr, 212121 ββββββ ∉∈≠′∈ aaUim )()()( 2

1
1

11 βτβττ −
′

−
′

−
′ =∈ UUU a , 

then 2β∈a , which is impossible. Thus our assumption is not true, 21 ββ =  and we 
can write imUUim PrPr ⊂′ . 

          Let us assume that imUO Pr∈   is an open set. It is a complement of the set 
F  of primitive ideals which  contain some fixed subset UM ⊂ . Thus FimUO \Pr=  
consists of primitive ideals U  of the algebra which do not contain the subset 

UM ⊂ . The closure O  is the set of primitive ideals which contain some subset



119 
 

MMUM ≠′⊂′ ;  of the algebra U  . The set OP ∩  consists of primitive ideals which 
contain both the set M  and the set M ′ The set OOFO =∩ )(|  consists of primitive 
ideals which contain the set M ′  and do not contain the set M . 

Let O∈α , then Uπα ker= , where )(: HUU ℑ→π  is some irreducible 

representation. Consider the factor-algebra U
U

′ , where
α

α O
U

∈
∩=′

. If U
UUp ′→: is a 

canonical projection and )(: HU
UU

U
ℑ→′

′π  is some irreducible representation, 

then the surjectivity of p  implies that the representation pU
UU

U o′
′ = ππ  is 

irreducible. It is obvious that 
U
UM ′⊂′ πker . Hence it follows that OU

U ∈′πker . 

Consider O∈α  and the representation )(: α
απ

U
HUpp ℑ→oo , where 

α
U

U
Up →′:  is defined by the formula ]][[])([ aap = , the class ]][[a   is obtained by 

the equivalence relation ][][ ba ≈   if α∈− ba , )(: α
α απ

U
HU ℑ→  is the irreducible 

injective representation of the primitive algebra α
U

. 

Since α
UUpp →:o is a canonical projection, we have  απ α =)ker( pp oo .  

Therefore if  pU
U

αππ =′
, then απ =′

U
Uker  and the set of primitive ideals of  the 

algebra U
U

′  coincides with the setO . 

 Let )(: HU
UU

U
ℑ→′

′π  be some irreducible representation. We consider the 

representat pU
UU

U o′
′ = ππ  and the kernel of this representation )(kerker 1 U

UU
U p ′−

′ = ππ . 

The factor-algebra )(ker1 U
U

p
U

′− π is primitive. The ∗C -morphism 
)(

)(ker
:

1(ker1
H

p
U

U
U

p U
U ℑ→

′−′− π
π

π
 defined by the formula 

])([]])([[
)(ker1

aa U
U

p U
U

′=
′−

ππ
π  

is an irreducible injective representation. Thus 
pp

U
U

p

U
U oo

)(ker1 ′−
=′

π
ππ

and hence it 

follows that each representation pU
UU

U o′
′ = ππ  has the form ppU

U ooαππ =′
′  and its 

kernel is equal to O∈α . 

From the above  reasoning we have U
UimO ′= Pr , where

α
α O

U
∈
∩=′

.  

Since U  is a ∗C -algebra, for each bilateral ideal UI ⊂  the algebra I
U

 is a 
primitive module [5,12]. Hence it follows that there exists a continuous ∗C -

monomorphism UI
U →:ϕ , for which the equality I

Uidp =ϕo
 is fulfilled. 

Therefore it can be assumed that UU
U ⊂′ .  
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As we see, to each set imUO Pr⊂  there corresponds a ∗C -algebra 
α

α OO UU
UU

∈
∩=′′≅ ;

such that OimUO Pr= . If imUOO Pr21 ⊂⊂ ,  then 21 UU ′⊂′  and 

there exists a ∗C -morphism of the algebra 
α

α 2
2 2

2
;

OO UU
UU

∈
∩=′′≅

into the algebra 
α

α 1
1 1

1
;

OO UU
UU

∈
∩=′′≅

. We denote this ∗C -morphism as follows: 12

2

1
: OO

O
O UU →ρ . 

Clearly, if imUOOO Pr321 ⊂⊂⊂ , then 
3

1

3

2

2

1

O
O

O
O

O
O ρρρ =o and OU

O
O Id=ρ .  

 If, additionally, to the empty set imUPr⊂Θ we put into correspondence a trivial 
∗C -algebra, then on the space imUPr we will define the  structural pre-sheaf of ∗C -

algebras [9,10].  We denote it by Uℑ .  
 The pre-sheaf Uℑ has the following property: for any open subsets 

imUOO Pr⊂⊂′ we have  OO UU ⊂′ . This means that  Uℑ  is a co-pre-sheaf as well 
[9, 10]. We denote it by  

C
Uℑ .  

 Let SpecU be the spectrum of a ∗C -algebraU . There exists a surjection 
imUSpecU Pr: →φ  [6]. It defines a topology on the set SpecU . This is the weakest 

topology among such topologies on SpecU , for which φ  is continuous. 
 Let now PU be the set of all pure states on U  [1]. There exists a surjection 

SpecUPU →:ϕ  [5] which also defines a topology on the set PU . This is the 
weakest topology among such topologies on PU , for which ϕ  is continuous when 
on SpecU  we have the above-mentioned topology.  

 Topological structures on the spaces PU , SpecU  and imUPr  are not always 
good (in the sense of separability), but we think that the construction of such 
structures makes sense all the same . 

 The mappings φϕϕφ o=h,,  are open and therefore the structures of a pre-sheaf 
and a co-pre-sheaf can be extended from the space imUPr    to  PU   and SpecU . 

 
2. A ONE METHOD OF DEFORMATION QUANTIZATION 

 
 Let us consider some option of  deformation quantization. Let U  be any ∗C - 

algebra, while UM ∗C -algebra of the corresponding operators at the universal 
representation of Algebra U  in relevant  Hilbert space UH .  Let  M be the ∗C -
algebra of all operators of Hilbert space UH . Consider the ∗C -Algebra ]][[tM  of 
convergent series ...3

3
2

210 ++++ ttt AAAAAAA  with coefficients in UM where operator
U

t MA ∈  defined as: CttvvAt ∈= ,)( . Let us denote sub ∗C -algebra of series which 

zero degree members are element of  UM  thus: 
U

tM ]][[ . For each fixed variable 0tt =  
from Rh ⊂),0[  and operators ...3

3
2

210 000
++++ ttt AAAAAAA  formed ∗C -algebra. Denote 

such ∗C -algebra of operators  us follows: 0t
M .  It is clear, that UMMM U

t ≈=→ 0
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when 0→t .So we build a continuous process, which ∗C -algebra tU  moves to ∗C -
Algebra U .  Such continuous process is called deformation. If the ∗C -algebra U  is 
commutative , then process of such  deformation process in Mathematical physics 
is called “deformation quantization” [4].  

 

Theorem 1. ]][[tt
U MMM ≅≅ , where the symbol ≅  denotes the homotopy 

equivalence. 
  

Proof:    It is clear , ]][[tt MM ⊂  for all ),0[ ht ∈  and  has place a ∗C - epymorphizm: 
0

2
210]][[ ...)(,: AAAAAAMM tt

U
t =+++→ ϕϕ , where

UMA ∈0 .  It is also clear that:
ϕϕϕ KerAA =′= −− )()( 0

1
0

1
 ...}{ 3

3
2

21 +++= ttt AAAAAA  for all 
UMAA ∈′00 ,  couples of  

elements. 

There exist section: ]][[
]][[: t

tU MKer
MMs →= ϕϕ  which meets the condition 

UMids =ϕϕ o . Since  ϕϕϕ KerAA =′= −− )()( 0
1

0
1

 ...}{ 3
3

2
21 +++= tt AAAAtA  is ∗C -algebra, 

it is convex and therefore contractible . This means, that ]][[ tMids ≅ϕϕ o and algebras 
UM and ]][[tM  are homotopy equivalent. 

Let 0tt = , then ]][[
]][[

0 t
t

t MKer
MM →= γ  where 

U
t MM →]][[:γ  ∗C -morphism, 

which is defined by the formula: ......)( 2
210

2
210 00

+++=+++ tttt AAAAAAAAAAγ ,
}0...|...{ 2

210
2

210 00
=++++++= tttt AAAAAAAAAAKerγ . 

 It is clear that ),0[
2

210
0

210
1 ...}{...)(

00 httttt AAAAAAAAAA ∈
− +++=+++γ , is convex, 

therefore contractible. So ∗C  - algebra 0t
M  homotopy  equivalent to ∗C  -algebra

]][[tM . Finally, we have that for any ),0[0 htt ∈=  numbers ∗C  - algebra UM  

homotopy equivalent to ∗C  - algebra 0t
M .  So, finally we have: ]][[0 tt

U MMM ≅≅

q.e.d.  

 From   this theorem it follows that: 
U

t imMMim PrPr ]][[ ≅ . 
 Let UM⊂α be a primitive  ideal, which corresponds to irreducible 

representation UMπ of  the UM  algebra in  Hilbert  space. Let us associate to this 

primitive ideal α  primitive  ideal ]][[tM⊂β  the corresponding irreducible 

representation ϕπ oU  of the  algebra ]][[tM .  So we build a continuous map 
]][[PrPr: t

U MimimM →∗ϕ  for Jacobson  topological structures. Here, let ]][[tM⊂β  be 

any primitive ideal which corresponds to irreducible  presentation ]][[ tMπ  in Hilbert 
space.  Let us associate to this primitive ideal  the primitive ideal UM⊂′α  defined 

by irreducible representation ϕπ s
tM o
]][[ . Thus, we have a continuous map: 
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U
t imMMims PrPr: ]][[ →∗

ϕ . It's easy to see, that ]][[Pr tMimids ≅∗∗
ϕϕ o and ]][[ tCMids ≅∗∗ ϕϕ o . 

Therefore, 
U

t imMMim PrPr ]][[ ≅ .    
  

3. CLASICAL AND QUANTUM  PHYSICAL  SPACE AND 
ELEMENTARY   PARTICLE  SYSTEMS 

 
According to axioms of   Algebraic quantum field theory [1,4,8] and properties 

of ∗C - Algebra  the global system of Elementary Particles (elementary field) may 
represent as })({ PUOC

C
U O ∈Γ=ℑ  co-pre- shaves and })({ PUOU O ∈Γ=ℑ  pre-shaves of ∗C -

algebras defined by some ∗C  - algebras on the space of pure states PU . As we 
mentioned above, )()( OOC Γ=Γ , the space PU , in this case, represents the physical 
space: the classical one, if ∗C -algebra U commutative, and the quantum one if ∗C -
algebra U non commutative. Each elementary particle (elementary fields) in this 
space is a pair: ))(,( OO Γ , where PUO ⊂ open sub set. We can conclude, that 
elements of elementary particles system: ))(,( 11 OO Γ , )),...,(,( 22 OO Γ ))(,( nn OO Γ  are 

present in the n - dimensional  interaction,  if 
Θ≠∩

= i

n

i
O

1 .  
Naturally, such a system of elementary particles may be considered  as a single 

particle. Suppose ))}(,{( αα OO Γ  is a particles system, such that }{ αO=Ω represents 
the open cover of the physical space PU . We can conclude that  the  chain  
complex with coefficients in })({ PUOC

C
U O ∈Γ=ℑ  co-pre-shaves and co-chain complex 

with coefficients in })({ PUOU O ∈Γ=ℑ pre-shaves : 
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0),(,0),( =ℑΩ=ℑΩ U

kC
Uk CC , if 0<k particle  interaction in the system ))}(,{( αα OO Γ

described.  
Moreover, we can conclude that the boundary and co boundary operators of this 

graded module represent, well known in quantum field theory, annihilation and 
creation operators,respectively. Co-chain complexes: )),)((,( k

PUOU
k OC δ∈Γ=ℑΩ  ar 

egraded ∗C -algebras,  indeed, define a multiplication operation of the module
),( U
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. 
 It is easy to show that co-boundary operator of our complex  correspond to this 

multiply: 
bababa jlk δδδ ⋅+⋅=⋅ )( . 

Therefore,  for such operation 
),( U

k

Zk

C ℑΩ∑
∈ is graded ∗C -algebra. This means 

that the 
)),)((,( k

PUOU
k OC δ∈Γ=ℑΩ   

is graded ∗C Algebra. 
Back to the covering }{ αO=Ω , if we consider  this family as pre-basic, in the set 

PU we obtained topological structure with pre-basic 
}{ ββ

Ω∪=Σ
, where }{ βΩ  is 

family of open coverings inscribed in covers Ω . Denote the resulting space as ΩPU . 
Evidently, 

),( U
k

Zk

CPPU ℑΩ=
∈

Ω ∑
 . 

 Let }{Ω=Ξ  is a complete family of open coverings of space PU . Knowing [13] 
how homomorphisms ),(),(: U

k
U

kk CC ℑΩ′→ℑΩΩ′
Ωθ  form a direct spectrum of 

modules it is clear that }){}({}))({(}))({( .......,..... 10101010 pkpk jjjiiijjjiii gfgf ⋅=⋅ Ω′
Ω

Ω′
Ω

Ω′
Ω θθθ , where 

Zk
k

k
∈

Ω′
Ω

Ω′
Ω ∑= }{ θθ

. So that
}){,),,(( ΩℑΩ Ω′

Ω
∈

∑ θU
k

Zk

C
 is a direct spectrum of ∗C

algebras. The limit of the direct spectrum of ∗C - algebras is ∗C -algebra[11]. This 
direct spectrum corresponds to the direct line spectrum of topological spaces 

}){,,( ΩΩ′
ΩΩ ιPU

, where Ω′Ω
Ω′
Ω → PUPU:ι  are identical  maps so, it  is clear that it is 

continuous. It is also obvious that  the limit of this spectrum is PU . 
The topological structure in space is such that space PU  is homotopy  

equivalent to imUPr  space. Because })({ PUOC
C
U O ∈Γ=ℑ  co-preshaves and 

})({ PUOU O ∈Γ=ℑ  pre- shaves of ∗C -algebras are induced from })({ Pr imUOC
C
U O ∈Γ=ℑ  co-

pre shaves and })({ Pr imUOU O ∈Γ=ℑ  preshaves, respectively. On this account, chain 
and co-chain complexes:  

)),)((,(),),)((,( k
PUOU

k
kPUO

C
Uk OCOC δ∈∈ Γ=ℑΩ∂Γ=ℑΩ    

are chain equivalent to chain and co-chain complexe ),),)((,( Pr kimUO
C
Uk OC ∂Γ=ℑΩ ∈

)),)((,( Pr
k

imUOU
k OC δ∈Γ=ℑΩ  respectively. 
 
For our specific deformation quantization  quantum and classical physical 

spaces are equivalent up to  homotopy equivalence. Therefore, their homological 
structures are the same, which means that they have of the same number and types 
singularities -black  holes. 
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 It is known that black holes arise as a result of gravitational collapse. This  
process, consists of   different stages,  but in  each stage we have transition from 
one level  of  structural hierarchy of the matter to  lower  level  of  hierarchy. 

.Appearing Black hole at the final stage of this process consists of the matter 
which has the lowest level of structural hierarchy or the Black hole consists the 
matter without structure. The matter without structure does not exist and in such 
case it should disappear. This implies that  black hole filled with so-called 
"primary matter" which structural hierarchy level is minimal, in such a case, it 
must mean that the black hole is one version of vacuum or  inside of black holes 
there is absolute emptiness(no vacuum)  which means that inside the black hole the 
physical space does  notexist. If  this conclusion is correct, then how to explain the 
huge gravitational attraction of black holes? It is accepted that in time section the 
physical space is Riemann’s manifold[2]. Density of mass distributed on this 
manifold, in each point, identified as curvature of this manifold in this point[2]. 
Betty numbers of this Riemann`s manifold are closely related to the curvature of 
this manifold [2]. 

The most curvature Riemann`s manifold has in points which are located near 
holes of this manifold. This implies  that  huge gravitational attraction have the 
area of the physical space replaced near  horizon  of the black hole and not the hole 
inside.  

 If we assume, that the black hole, obtained by gravitational collapse,  is vacuum 
or hole topological point of view, than  destruction of  levels structural hierarchy 
matter at this process  should end with  full annihilation. This annihilation of 
matter must be obtained by the action operators of annihilation  and creation.  
Likely this action  has been activated  during such a process . This view 
strengthens the idea of representation of operators annihilation  and creation   as a 
boundary operator of the chain complexes and as co-boundary operators of co-
chain complexes. 
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To the fracture theory of multilayered materials 
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Abstract.  In this report the estimation of the element’s fracture algorithm of 
the multilayered material of the thermonuclear unit reactor shell type, is based 
on the force approach, which is in its turn based on the use of the stress 
intensity coefficient K1.  
Keywords: multilayered materials. 
PACS: 62.20.F- 

 

 In the case of the crack exposure on the edge of the interface between 
diverse materials, a two-parametric criterion is used, formulation of which includes 

two material constants, 
(i)KIIC  and sτ . The following is assumed: for each material 

made from multilayered composition the brittle fracture is characteristic; on the 
boarders of the joint of the diverse materials made from the multilayered 
composition, conditions of the joined deformations are fulfilled. 
The algorithm of the brittle strength estimation of the multilayered constructions 
consists of two stages, each establishing the type of fracture (normal rupture of the 
layer or stratification), the type and the size of the fracture and the crack’s further 
behavior (stop-growth). These stages are the following: 
 
Stage 1. Surface crack of the normal rupture in the first layer. It is assumed that 
this surface crack of the normal rupture is entirely within the layer which contains 
it. The solution of the corresponding boundary value problem for n (n≥1) - layered 
material, was obtained and the quantity K1 was determined as the function of the 
length of the crack, external load, geometrical and physical-mechanical 
parameters. Here also conditions were found at which the arrest (braking) of the 
crack occurs, other values of the parameters being equal. These conditions should 
be taken into account when designing and operating the multilayered constructions. 
Stage 2. Surface crack of the normal rupture with its apex on the section’s border. 
Two possible fracture cases are considered here: 
Material stratification. Material stratification can take place if the condition 

)(
IICK 2,1

 < 
)(

ICK 2
is satisfied; 
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Propagation of the normal rupture crack in the second layer. This case is true when 
)(

ICK 2
 < 

)(
IICK 2,1

. 
Operations presented above can be carried out multiple times, which allow 
describing the process of the crack propagation from one material into another.  
For practical purposes while working out the analysis algorithm of the elements, of 
the multilayered constructions on the fracture, it was taken into account that: 
The maximum use of the positions of the document ISDC (ITER Structure Design 
Criteria). Possibility of an experimental estimation of the defect size crack and its 
location within the multilayered material. Availability of the data on physical-
mechanical material properties, on parameters of the brittle fracture of the 

multilayered composition 
)(iK IC  and on the adhesion strength on the boarders of the 

section 
),( jiKIIC or the possibility of their experimental determination. 
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Fracture stoppage, perpendicular to the interface of the two 

elastic environments 
Valekh Kulijeva,b 

aApplied Mathematics Department, Moscow State Open University 
  

bMoscow State University of Mechanical Engineering 
E-mail: pmdekanat@gmail.com 

 

Abstract.  The main perpendicular fracture stoppage mechanism in the 
composite materials is the formation of the sliding fractures, which occur on 
the interface of the different elastic environments with its intersection by the 
main fracture of the normal separation.  
Keywords: multilayered materials. 
PACS: 62.20.F- 

 
 This mechanism is analysed below on the basis of the exact solution of the 

generalized Zak-Williams problem, found by the modified Wiener-Hopf method. 
It is assumed that the length of the sliding fracture is small in comparison to the 

length of the main separation fracture and the typical body size. In this case the 
Zak-Williams solution presents itself as the precise asymptotics of the solution 
obtained on the distances, which are larger than the sliding fracture’s length, but 
smaller than the length of the main separation fracture. Precise closed formulas are 
obtained for the tensions on the edge of the fracture and for the tension intensity 
coefficient on the edge of the sliding fracture as well. 

1. Problem definition. Let’s consider two homogeneous isotropic half-spaces 
from the different elastic materials, firmly coupled along the plane x=0 
(diagram 1). Fracture’s front coincides with the coordinate’s origin. Problem 
is considered to be flat. 
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Diagram 1 

 
Half-space x≤0 is divided in two parts by the main separation fracture y=0, 

x≤0, banks of which are free from tensions. On the edge of half-spaces division 
there is a diametrical sliding fracture, length l, which is without generality 
restrictions, can be taken to be equal to one (x=0, |y| ≤ 1). In case if the length l of 
the sliding fracture is equal to zero, canonical singularity problem results, which 
was precisely solved by Zak-Williams. In the task considered the Zak-Williams 
solution must realize as a set asymptotics of the desired solution with r→∞ (r, θ – 
polar coordinates). 
Solution to the given problem is created. The length of the sliding line is 
determined 
 
 
 
 
 

Here Fj(k) (j=0.1) – known function (look []); KI –  tension intensity 
coefficient, which is s set load parameter in the considered singularity problem; λ – 
root of the Zak-Williams characteristic equation; quantity τs is constant (it 
characterizes resistance to the dislocation of the 
adhesion layer in the limit state). 
Graphs of the functions, are shown on the diagram. 
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To the theory of the multilayered materials 
destruction with fracture 

 
Valekh Kulijeva,b 
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Abstract.  The estimation of the element’s fracture algorithm of the 
multilayered material of the thermonuclear unit reactor shell type, is based on 
the force approach.  
Keywords: multilayered materials. 
PACS: 62.20.F- 

 

 Let's consider a problem. Let the elastic semiplane x≥0, made of n+1 
various materials Gk, vk (Gk - the shift module, vk - factor of Puasson), rigidly 
linked along a plane x x=hk, k=1,…,n, contains a regional crack y=0, 0≤x≤l, l<h1, 
which is perpendicular the border which is free of pressure x=0  of sections x=hk, 
k=1,…,n. Set normal tension is applied to the borders of the fracture . The problem 
is considered to be symmetric when concerns a plane y=0. On infinity pressures 
are absent, and displacements disappear. 
Boundary conditions look like this: 

      ;0)()(,,0 11 ==∞<= xyxyx τσ    (1.1) 
      ;0)(,0)()(),,0(,0 11 =≤−=∈= xyy xplxy τσ   (1.2) 

     ;0)(,0)(),,(,0 111 ==∈= vhlxy xyτ    (1.3) 
      ;,...,2,0)(,0)(),,(,0 1 njvhhxy jjxyjj ===∈= − τ   (1.4) 

      ;0)(,0)(,,0 11 ==>= ++ nnxyn vhxy τ   (1.5) 
      ;)()(,)()(,, 11 ++ ==∞<= jxyjxyjxjxj yhx ττσσ  (1.6) 

.,...,1,)()(,)()( 11 njvvuu jjjj === ++  
 
At y=0, x→l+0 

1)()(2 ylx σπ − ~KI.    (1.7) 
Here p(x) – the set continuous function; KI – pressures intensity factor, which is 
subject to definition. 

For the problem solution in x≥0, y≥0 we search in the form [1, 2]: at hj-1<x<hj 
(j=1,…,n, h0=0; j’s environment : Gj, vj) 
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at x>hn=H ((n+1)’s environment: Gn+1, vn+1) 
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The condition (1.5) is thus satisfied. 
We look for the function )()1(

2 ηC  in the form of [1, 2]  

   ∫=
l

dttJttC
0

0
)1(

2 ,)()(
2

)( ηψπη    (1.10) 

where ],0[)( 1 lCt ∈ψ  - the new unknown function. 
 
 Substituting (1.10) into (1.8)  and satisfying conditions (1.1), (1. 22), (1. 31) 
and (1. 4), we get: 

 

(1.11)       

      [ ]{ } .)()()()()(
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)1(2
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1100
)1(

0
)1(

11 dttLtIttLtIttABv
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∫ ′−+−=−− − λλλλλψπλ (1.12) 

Here )(xIk  and )(xLk  - the modified functions of Bessel and Struve. 
According to (1.8) – (1.11) and to a boundary condition (1.6) we come to the 

system of equations, the order of a matrix of which is equal to 4n relative to 4n+1 
unknowns: ψ(t), )( j

mA , j=1,…,n,  )( j
mB , j=2,…,n, A4, C4, where m=0,1. And this 

system of the equations, appears from (1.12), (1.10) and (1.8), is algebraic relative 
to 4n of the unknown functions, )( j

mA , )( j
mB , A4 and C4.. Hence, if functions, )( j

mA , 
)( j

mB , A4 and C4  present in the way of 
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then the system mentioned above is reduced to system 4n the linear algebraic 
equations relative to 4n of the unknown functions, )( j

ma , )( j
mb  (j=1,…,n; k=2,…,n; 

m=0, 1) 4a  and 4c  with the unknown parts on the right. 
By means of the remained boundary conditions (1.21) and (1.32) we come to 

the integrated equation of the Fredholm’s type of the 2nd sort. 
 
 
 
 
        
 
 
 

(1.14) 
The pressures intensity factor coefficient is defined as this: 
 
 
 

 
1.2 °. Solution analysis. Thanks to the representation of required functions in the 
form of (1.13) a practical calculation possibility of the values )(0 ⋅ψ  for any number 
of layers n and combinations of materials properties and by that the solution of 
problems on optimal design of the multilayered constructions. The computer 
program is design for this in which the solution to the equation (1.14) is reduced to 
the solution of the system of the linear algebraic equations with an order m*m. 
 
Let's consider the private cases of the common solution. Let n=3; hq=qh1 (q=2,3); 
v1=v2=v3=v4=0,3; k4,3=1; 0,1; 10; 0 (if kj,i=0, than vj=0), k3,2=1; 0,1; 10; k2,1=1; 0,1; 
10 and laxlxp /)()(0 −= , h3=1. Results of numerical calculation of the dependence 

)/( 1hKI πσ from 1/ hl  at the various values parameters of which are specified above 
are presented on fig. 1. 
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Thick lines represent the curves corresponding to a=0 (stretching), by thin 
lines – a=1 (bend). 

During the calculations it was established that it is enough to have m=20 in 
order to obtain the three steady decimal figures values of the function )(0 ⋅ψ . 

The analysis shows: if 11,2 <k , than at any values 2,3k  and 3,4k  function )(0 ⋅ψ  
increases with the increase of )1,0(/ 1 ∈hl ; if 11,2 <k , than at the fixed values 

)1,0(/ 1 ∈hl  function )(0 ⋅ψ  increases with reduction of 2,3k ; function )(0 ⋅ψ  at any 
fixed values of )1,0(/ 1 ∈hl  has the greatest value at 11,2 =k , 02,3 =k  and 03,4 =k ; if 

03,4 =k  and 11,3 =k  than the function )(0 ⋅ψ  increases with increase of 2,3k  at any 
fixed values of )1,0(/ 1 ∈hl , thus if 12,3 >k than the function )(0 ⋅ψ  increases with 
increase of )1,0(/ 1 ∈hl , and if 12,3 <k  decreases with increase of )1,0(/ 1 ∈hl . 

For the fracture indurance research of the multilayered materials, and also 
the processes of their destruction (fatigue failure, destruction at thermomechanical 
and radiating influences, etc.) the function ,...)/,( 10 hlxψ  approximations are very 
important, where ]1,0(∈x . Function ,...)/,( 10 hlxψ  for the considered cases is 
approximated on a method of Chebyshev with a margin error in the parts of 
approximation no more than 0,01 % by the polynoms. 
 
 
 
Values of coefficients qd  and qp  because of the volume limitation are not 
specified here. 
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Abstract: We show that propagation of ultrashort (few-cycle) pulses in nonlinear 
Drude metamaterials with both electric and magnetic Kerr nonlinearities is 
described by coupled generalized Short Pulse Equations. The resulting system of 
equations generalizes to the case of metamaterials both the Short Pulse Equation 
and its vector generalizations which  describe the few-cycle pulses in dielectric 
optical fibers beyond the slowly varying envelope approximation leading to the 
nonlinear Schroedinger equation.  
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   Metamaterials are artificial structures that display properties beyond those available 
in naturally occurring materials. The most notable are the negative refraction  index 
materials with simultaneously negative electric and magnetic dispersive responses, 
which affect substantially the conventional optics and its  applications. Metamaterials 
with the negative refraction  index have a number of extraordinary properties, such as 
the reversed Snell refraction, reversed Doppler effect, reversed radiation tension, 
negative Cerenkov radiation, reversed Goos-Haenchen shift, etc. Such materials  can 
be used in various devices, such a compact cavities, superlenses, subwavelength 
waveguides and antennas, electromagnetic cloaking devices, tunable mirrors, 
isolators, phase compensators, and many others. Metamaterials can be also used to 
study ideas developed to describe physics in curved space-times and to model 
virtually any space-time metric of General Relativity.  
  A typical metamaterial with the negative refraction index is composed of a 
combination of a regular array of electrically small resonant particles, referred to as 
split-ring resonators, and a regular array of conducting wires responsible for the 
negative electric permittivity and negative magnetic permeability. The size and 
spacing of these elements is supposed to be much smaller than the wavelength of the 
propagating optical field, so that the metamaterial can be considered as a continuous 
and homogeneous medium.  
   Different models have been used to describe propagation of short and ultrashort 
optical pulses in metamaterials. For metamaterials without nonlinear magnetization a 
generalized nonlinear Schroedinger equation (NSE)  has been derived [1, 2, 3, 4, 5]. 
For metamaterials with nonlinear magnetizations a single-component NSE for the 
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electric field has been obtained in [6] . For the sufficiently long temporally optical 
pulses a system of coupled NSE can be used [7, 8, 9, 10]. 
   However, for ultrashort few-cycle pulses the envelope approximation is not valid 
and the NSE cannot be applied. For metamaterials without the nonlinear 
magnetization a single-component generalized SPE for the electric field has been  
obtained in [11, 12]. When the nonlinear magnetization is present the equations for 
the electric and magnetic field cannot be uncoupled: Kinsler [13] derived in this case 
the equations for the unidirectional optical pulse propagation. Here we show that the 
propagation of few-cycle pulses in metamaterials with electric and magnetic Kerr-
type nonlinear response can be described by a coupled system of Short Pulse 
Equations for the electric and magnetic field.  
   It has been shown that a composite metamaterial with negative refraction index can 
develop a non-linear macroscopic magnetic response. This means that, although the 
host medium has a negligible magnetic non-linearity, the periodic inclusions of the 
metamaterial can produce an effective magnetic non-linear response when the wave-
length of the optical field is much larger than the periodicity of the inclusions, which 
is technologically feasible now.  
   Thus, let us consider a metamaterial with nonlinear magnetization. Let us start from 
the Maxwell equations for an optical field propagation along the z-direction in an 
optical fiber made of the corresponding metamaterial.   

 
∂z E=− ∂t B− ∂ t M nl  

 
,P+D=H nlttz ∂∂∂−  

 
∂ x D= 0  

 
∂ y B= 0  

 
where it is assumed that the electric and magnetic fields are linearly polarized: 
 

 ( )0,0E,=E , ( )0,0H,=H . 
 
The dielectric and magnetic response of a nonlinear material is characterized by  
the electric displacement field ( ) ( ) ( ),ωEωε=ωD ~~ magnetic induction ( ) ( ) ( ),ωHωμ=ωB ~~  
nonlinear polarization E,ε=P nlnl and nonlinear magnetization H.μ=M nlnl   
   Let us  assume that both the electric and the magnetic nonlinearities are of Kerr 
type, 2Eχ=ε enl and .2Hχ=μ mnl Substituting the material equations into the Maxwell 
equations we obtain in the frequency domain: 
 
                                        ( ) 3~~~ HiωHωiω=E mz χμ −−∂                                             (1) 
 
                                         ( ) 3~~~ EiωEωiω=H ez χε −−∂                                              (2) 
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Acting with z∂  on  equation (1) and using  equation (2) we get: 
 

             ( ) ( ) ( ) ( )( ) ,EHχωε+Eχωμ+ωεωμω=E mezz
~~3~~ 222−∂                             (3) 

 
Similarly, acting with ∂z  on equation (2) and using equation (1) we obtain: 
 

                         ( ) ( ) ( ) ( )( ) .~~3~~ 222 EEχωμ+Hχωε+ωμωεω=H emzz −∂                         (4)  
 
Now, let us assume that the dispersive properties of the metamaterial are given by 
the lossless Drude model: 
 

( ) ( )22
0 /1 ωωε=ωε e−  and  ( ) ( ),ωωμ=ωμ m

22
0 /1−  

 
where eω and mω are the electric and magnetic plasma frequencies, respectively. 
Then  
 

( ).ωωω+ωωωωμεεμ meme
422222

00 ///1−=  
 
Neglecting the term proportional to 4−ω and using c,=με 00 where c is the velocity of 
light in vacuum, we obtain:  
 

( ) ( ) ( ).//1 2222
00 ωωωωμεωμωε me−=  

 
Substituting these formulas into equations (3) and (4) and applying the Fourier 
transform, we obtain: 

 
( ) ( ) ( ) E,Hχωε+EHχε+Eχωμ+Eχμ+Ecω+ω+cE=E mettmemttemettzz

22
0

2
0

32
0

3
0

2222 33// ∂∂∂∂   (5)  
 
 

( ) ( ) ( ) H.Eχωμ+HEχμ+Hχωε+Hχε+Hcω+ω+cH=H emttemettmmettzz
22

0
2

0
32

0
3

0
2222 33// ∂∂∂∂     (6)    

 
Introducing new variables: czt=τ /− and z=ζ  for which ζξζτττzz +c+= ∂∂∂∂ /22/1 2

and .ττtt = ∂∂  in equations (5) and (6) and making use of the paraxial 
approximation: 0=H=E ξξξξ ∂∂ , we obtain:  
 

     ( ) ( ) E,Hω+cχε+cEχωμ+Ecχμ+E
c
ω+ω=E eττmemττe

me
ζτ

22
0

32
0

3
0

22

2
3

2
1

2
1

2
∂∂∂            (7) 

 

    ( ) ( ) H.Eω+cχμ+cHχωε+Hcχε+H
c
ω+ω=H mττemeττm

me
ζτ

22
0

32
0

3
0

22

2
3

2
1

2
1

2
∂∂∂           (8) 
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Thus, we have obtained the set of two coupled generalized Short Pulse Equations. 
In the limit ωm→0 and χm→0 equation (7) reduces to the Short Pulse Equation 
derived by Schäfer and Wayne [16] 
 

∂ζ τ E=
ωe

2

2 c
E + 1

2
μ0χ e c ∂τ τ (E3) ,  

 
which later was shown to be an integrable system [15,16]. With certain 
combination of the parameters of the metamaterial we can also obtain from 
equations (7) and (8) different integrable vector generalizations of the short pulse 
equation obtained by us [17] and other authors [18,19]. 
 
In conclusion, a consideration of the propagation of ultra-short few-cycle polarized 
optical pulses in the Drude metamaterial optical fibers with electric and magnetic 
Kerr nonlineratity leads to the coupled set of equations which generalizes the Short 
Pulse Equation.  It allows to describe the ultra-short and spectrally broad optical 
pulses beyond the slow varying envelope approximation. It may open a possibility 
of studying a new class of optical phenomena in metamaterials when the spectral 
range of the optical field overlaps the regions with different signs of optical indices 
of the metamaterial.  
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